Geometry For Enjoyment And Challenge
Geometry For Enjoyment And Challenge
91st Edition
ISBN: 9780866099653
Author: Richard Rhoad, George Milauskas, Robert Whipple
Publisher: McDougal Littell
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 9.3, Problem 4PSA

a.

To determine

To calculate: Thelength of OK

a.

Expert Solution
Check Mark

Answer to Problem 4PSA

The length of OK is 215

Explanation of Solution

Given:

The measures of the given lengths are as follows:

JK = 12

KM = 5

Concept used:

Here, we are using the concept hypotenuse leg theorem.

Calculation:

According to property associated with altitudes in right angled triangle. The altitude to hypotenuse divides the triangles into two similar triangles.

Hence, ΔOJKΔOKM

So, OKJK=KMOK

  OK2=KM×JK

  →OK2=12×5

  →OK=60

  →OK=215

Conclusion: Hence, the length of OK is 215

b.

To determine

To calculate: Thelength of KM

b.

Expert Solution
Check Mark

Answer to Problem 4PSA

The length of KM is 5

Explanation of Solution

Given:

The measures of the given lengths are as follows:

OK = 35

JK = 9

Concept used:

Here, we are using the concept hypotenuse leg theorem.

Calculation:

According to property associated with altitudes in right angled triangle. The altitude to hypotenuse divides the triangles into two similar triangles.

Hence, ΔOJKΔOKM

So, OKJK=KMOK

  OK2=KM×JK

  →45=9×KM

  →KM=5

Conclusion: Hence, the length of KM is 5

c.

To determine

To calculate: Thelength of JM

c.

Expert Solution
Check Mark

Answer to Problem 4PSA

The length of JM is 6

Explanation of Solution

Given: The measures of the given lengths are as follows:

JO = 32

JK = 3

Concept used:

Here, we are using the concept hypotenuse leg theorem and Pythagoras theorem.

Calculation:

Here, (JO)2=(OK)2+(JK)2

  18=(OK)2+9

  OK=3

Now, according to property associated with altitudes in right angled triangle. The altitude to hypotenuse divides the triangles into two similar triangles.

Hence, ΔOJKΔOKM

So, OKJK=KMOK

  OK2=KM×JK

  →9=3×KM

  →KM=3

And we know that JK=3

So, JM=3+3=6

Conclusion: Hence, the length of JM is 6

d.

To determine

To calculate: Thelength of OM

d.

Expert Solution
Check Mark

Answer to Problem 4PSA

The length of OM is 55

Explanation of Solution

Given:

The measures of the given lengths are as follows:

KM = 5

JK = 6

Concept used:

Here, we are using the concept hypotenuse leg theorem and Pythagoras theorem.

Calculation:

According to property associated with altitudes in right angled triangle. The altitude to hypotenuse divides the triangles into two similar triangles.

Hence, ΔOJKΔOKM

So, OKJK=KMOK

  OK2=KM×JK

  →(OK)2=5×6

  →OK=3

Here, (JO)2=(OK)2+(JK)2

  (JO)2=30+36

  (JO)2=60

And, (OM)2=(OK)2+(KM)2

  (OM)2=30+25

  OM=55

Conclusion: Hence, the length of OM is 55

Chapter 9 Solutions

Geometry For Enjoyment And Challenge

Ch. 9.1 - Prob. 11PSBCh. 9.1 - Prob. 12PSBCh. 9.1 - Prob. 13PSCCh. 9.2 - Prob. 1PSACh. 9.2 - Prob. 2PSACh. 9.2 - Prob. 3PSACh. 9.2 - Prob. 4PSACh. 9.2 - Prob. 5PSACh. 9.2 - Prob. 6PSACh. 9.2 - Prob. 7PSACh. 9.2 - Prob. 8PSACh. 9.2 - Prob. 9PSACh. 9.2 - Prob. 10PSACh. 9.2 - Prob. 11PSACh. 9.2 - Prob. 12PSBCh. 9.2 - Prob. 13PSBCh. 9.2 - Prob. 14PSBCh. 9.2 - Prob. 15PSBCh. 9.2 - Prob. 16PSBCh. 9.2 - Prob. 17PSBCh. 9.3 - Prob. 1PSACh. 9.3 - Prob. 2PSACh. 9.3 - Prob. 3PSACh. 9.3 - Prob. 4PSACh. 9.3 - Prob. 5PSACh. 9.3 - Prob. 6PSACh. 9.3 - Prob. 7PSACh. 9.3 - Prob. 8PSACh. 9.3 - Prob. 9PSACh. 9.3 - Prob. 10PSACh. 9.3 - Prob. 11PSACh. 9.3 - Prob. 12PSBCh. 9.3 - Prob. 13PSBCh. 9.3 - Prob. 14PSBCh. 9.3 - Prob. 15PSBCh. 9.3 - Prob. 16PSBCh. 9.3 - Prob. 17PSBCh. 9.3 - Prob. 18PSBCh. 9.3 - Prob. 19PSCCh. 9.3 - Prob. 20PSCCh. 9.3 - Prob. 21PSCCh. 9.3 - Prob. 22PSCCh. 9.3 - Prob. 23PSDCh. 9.3 - Prob. 24PSDCh. 9.4 - Prob. 1PSACh. 9.4 - Prob. 2PSACh. 9.4 - Prob. 3PSACh. 9.4 - Prob. 4PSACh. 9.4 - Prob. 5PSACh. 9.4 - Prob. 6PSACh. 9.4 - Prob. 7PSACh. 9.4 - Prob. 8PSACh. 9.4 - Prob. 9PSACh. 9.4 - Prob. 10PSACh. 9.4 - Prob. 11PSBCh. 9.4 - Prob. 12PSBCh. 9.4 - Prob. 13PSBCh. 9.4 - Prob. 14PSBCh. 9.4 - Prob. 15PSBCh. 9.4 - Prob. 16PSBCh. 9.4 - Prob. 17PSBCh. 9.4 - Prob. 18PSBCh. 9.4 - Prob. 19PSBCh. 9.4 - Prob. 20PSBCh. 9.4 - Prob. 21PSBCh. 9.4 - Prob. 22PSBCh. 9.4 - Prob. 23PSBCh. 9.4 - Prob. 24PSCCh. 9.4 - Prob. 25PSCCh. 9.4 - Prob. 26PSCCh. 9.4 - Prob. 27PSCCh. 9.4 - Prob. 28PSCCh. 9.4 - Prob. 29PSCCh. 9.4 - Prob. 30PSCCh. 9.4 - Prob. 31PSCCh. 9.4 - Prob. 32PSDCh. 9.4 - Prob. 33PSDCh. 9.4 - Prob. 34PSDCh. 9.4 - Prob. 35PSDCh. 9.4 - Prob. 36PSDCh. 9.5 - Prob. 1PSACh. 9.5 - Prob. 2PSACh. 9.5 - Prob. 3PSACh. 9.5 - Prob. 4PSACh. 9.5 - Prob. 5PSACh. 9.5 - Prob. 6PSACh. 9.5 - Prob. 7PSACh. 9.5 - Prob. 8PSACh. 9.5 - Prob. 9PSACh. 9.5 - Prob. 10PSACh. 9.5 - Prob. 11PSACh. 9.5 - Prob. 12PSACh. 9.5 - Prob. 13PSBCh. 9.5 - Prob. 14PSBCh. 9.5 - Prob. 15PSBCh. 9.5 - Prob. 16PSBCh. 9.5 - Prob. 17PSBCh. 9.5 - Prob. 18PSBCh. 9.5 - Prob. 19PSBCh. 9.5 - Prob. 20PSBCh. 9.5 - Prob. 21PSBCh. 9.5 - Prob. 22PSBCh. 9.5 - Prob. 23PSBCh. 9.5 - Prob. 24PSBCh. 9.5 - Prob. 25PSCCh. 9.5 - Prob. 26PSCCh. 9.5 - Prob. 27PSCCh. 9.6 - Prob. 1PSACh. 9.6 - Prob. 2PSACh. 9.6 - Prob. 3PSACh. 9.6 - Prob. 4PSACh. 9.6 - Prob. 5PSACh. 9.6 - Prob. 6PSACh. 9.6 - Prob. 7PSACh. 9.6 - Prob. 8PSACh. 9.6 - Prob. 9PSACh. 9.6 - Prob. 10PSACh. 9.6 - Prob. 11PSACh. 9.6 - Prob. 12PSACh. 9.6 - Prob. 13PSBCh. 9.6 - Prob. 14PSBCh. 9.6 - Prob. 15PSBCh. 9.6 - Prob. 16PSBCh. 9.6 - Prob. 17PSBCh. 9.6 - Prob. 18PSBCh. 9.6 - Prob. 19PSCCh. 9.6 - Prob. 20PSCCh. 9.6 - Prob. 21PSCCh. 9.6 - Prob. 22PSCCh. 9.6 - Prob. 23PSCCh. 9.6 - Prob. 24PSDCh. 9.6 - Prob. 25PSDCh. 9.7 - Prob. 1PSACh. 9.7 - Prob. 2PSACh. 9.7 - Prob. 3PSACh. 9.7 - Prob. 4PSACh. 9.7 - Prob. 5PSACh. 9.7 - Prob. 6PSACh. 9.7 - Prob. 7PSACh. 9.7 - Prob. 8PSACh. 9.7 - Prob. 9PSACh. 9.7 - Prob. 10PSACh. 9.7 - Prob. 11PSACh. 9.7 - Prob. 12PSBCh. 9.7 - Prob. 13PSBCh. 9.7 - Prob. 14PSBCh. 9.7 - Prob. 15PSBCh. 9.7 - Prob. 16PSBCh. 9.7 - Prob. 17PSBCh. 9.7 - Prob. 18PSBCh. 9.7 - Prob. 19PSBCh. 9.7 - Prob. 20PSBCh. 9.7 - Prob. 21PSBCh. 9.7 - Prob. 22PSBCh. 9.7 - Prob. 23PSBCh. 9.7 - Prob. 24PSCCh. 9.7 - Prob. 25PSCCh. 9.7 - Prob. 26PSCCh. 9.7 - Prob. 27PSDCh. 9.7 - Prob. 28PSDCh. 9.8 - Prob. 1PSACh. 9.8 - Prob. 2PSACh. 9.8 - Prob. 3PSACh. 9.8 - Prob. 4PSACh. 9.8 - Prob. 5PSACh. 9.8 - Prob. 6PSACh. 9.8 - Prob. 7PSACh. 9.8 - Prob. 8PSACh. 9.8 - Prob. 9PSACh. 9.8 - Prob. 10PSACh. 9.8 - Prob. 11PSBCh. 9.8 - Prob. 12PSBCh. 9.8 - Prob. 13PSBCh. 9.8 - Prob. 14PSBCh. 9.8 - Prob. 15PSBCh. 9.8 - Prob. 16PSBCh. 9.8 - Prob. 17PSBCh. 9.8 - Prob. 18PSCCh. 9.8 - Prob. 19PSCCh. 9.8 - Prob. 20PSCCh. 9.8 - Prob. 21PSCCh. 9.8 - Prob. 22PSCCh. 9.8 - Prob. 23PSDCh. 9.9 - Prob. 1PSACh. 9.9 - Prob. 2PSACh. 9.9 - Prob. 3PSACh. 9.9 - Prob. 4PSACh. 9.9 - Prob. 5PSACh. 9.9 - Prob. 6PSACh. 9.9 - Prob. 7PSACh. 9.9 - Prob. 8PSACh. 9.9 - Prob. 9PSBCh. 9.9 - Prob. 10PSBCh. 9.9 - Prob. 11PSBCh. 9.9 - Prob. 12PSBCh. 9.9 - Prob. 13PSBCh. 9.9 - Prob. 14PSBCh. 9.9 - Prob. 15PSBCh. 9.9 - Prob. 16PSBCh. 9.9 - Prob. 17PSBCh. 9.9 - Prob. 18PSBCh. 9.9 - Prob. 19PSCCh. 9.9 - Prob. 20PSCCh. 9.9 - Prob. 21PSCCh. 9.9 - Prob. 22PSCCh. 9.10 - Prob. 1PSACh. 9.10 - Prob. 2PSACh. 9.10 - Prob. 3PSACh. 9.10 - Prob. 4PSACh. 9.10 - Prob. 5PSACh. 9.10 - Prob. 6PSBCh. 9.10 - Prob. 7PSBCh. 9.10 - Prob. 8PSBCh. 9.10 - Prob. 9PSBCh. 9.10 - Prob. 10PSBCh. 9.10 - Prob. 11PSBCh. 9.10 - Prob. 12PSBCh. 9.10 - Prob. 13PSBCh. 9.10 - Prob. 14PSBCh. 9.10 - Prob. 15PSBCh. 9.10 - Prob. 16PSCCh. 9.10 - Prob. 17PSCCh. 9.10 - Prob. 18PSCCh. 9.10 - Prob. 19PSCCh. 9.10 - Prob. 20PSDCh. 9.10 - Prob. 21PSDCh. 9 - Prob. 1RPCh. 9 - Prob. 2RPCh. 9 - Prob. 3RPCh. 9 - Prob. 4RPCh. 9 - Prob. 5RPCh. 9 - Prob. 6RPCh. 9 - Prob. 7RPCh. 9 - Prob. 8RPCh. 9 - Prob. 9RPCh. 9 - Prob. 10RPCh. 9 - Prob. 11RPCh. 9 - Prob. 12RPCh. 9 - Prob. 13RPCh. 9 - Prob. 14RPCh. 9 - Prob. 15RPCh. 9 - Prob. 16RPCh. 9 - Prob. 17RPCh. 9 - Prob. 18RPCh. 9 - Prob. 19RPCh. 9 - Prob. 20RPCh. 9 - Prob. 21RPCh. 9 - Prob. 22RPCh. 9 - Prob. 23RPCh. 9 - Prob. 24RPCh. 9 - Prob. 25RPCh. 9 - Prob. 26RPCh. 9 - Prob. 27RPCh. 9 - Prob. 28RPCh. 9 - Prob. 29RPCh. 9 - Prob. 30RPCh. 9 - Prob. 31RPCh. 9 - Prob. 32RPCh. 9 - Prob. 33RPCh. 9 - Prob. 34RPCh. 9 - Prob. 35RPCh. 9 - Prob. 36RPCh. 9 - Prob. 37RPCh. 9 - Prob. 1CRCh. 9 - Prob. 2CRCh. 9 - Prob. 3CRCh. 9 - Prob. 4CRCh. 9 - Prob. 5CRCh. 9 - Prob. 6CRCh. 9 - Prob. 7CRCh. 9 - Prob. 8CRCh. 9 - Prob. 9CRCh. 9 - Prob. 10CRCh. 9 - Prob. 11CRCh. 9 - Prob. 12CRCh. 9 - Prob. 13CRCh. 9 - Prob. 14CRCh. 9 - Prob. 15CRCh. 9 - Prob. 16CRCh. 9 - Prob. 17CRCh. 9 - Prob. 18CRCh. 9 - Prob. 19CRCh. 9 - Prob. 20CRCh. 9 - Prob. 21CRCh. 9 - Prob. 22CRCh. 9 - Prob. 23CRCh. 9 - Prob. 24CRCh. 9 - Prob. 25CRCh. 9 - Prob. 26CRCh. 9 - Prob. 27CRCh. 9 - Prob. 28CRCh. 9 - Prob. 29CRCh. 9 - Prob. 30CRCh. 9 - Prob. 31CR
Knowledge Booster
Background pattern image
Geometry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, geometry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Text book image
Elementary Geometry for College Students
Geometry
ISBN:9781285195698
Author:Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:Cengage Learning
Fundamental Trigonometric Identities: Reciprocal, Quotient, and Pythagorean Identities; Author: Mathispower4u;https://www.youtube.com/watch?v=OmJ5fxyXrfg;License: Standard YouTube License, CC-BY