Concept explainers
a. How many different 7-place license plates are possible if the first 2 places are for letters and the other 5 for numbers?
b. Repeat part (a) under the assumption that no letter or number can be repeated in a single license plate.
(a)
The number of different 7-place license plates.
Answer to Problem 1.1P
67600000
Explanation of Solution
Given:
First 2 places are for letters.
Other 5 places are for numbers.
Calculation:
Total number of letters is 26 (A to Z)
Total number of digits is 10 (0 to 9)
Applying the basic principle of counting, number of license plates will be
(b)
The number of different 7-place license plates.
Answer to Problem 1.1P
19656000
Explanation of Solution
Given:
First 2 places are for letters.
Other 5 places are for numbers.
No letter or number can be repeated in a single license plate.
Calculation:
As there can be no repetition,
The first place letter has 26 options.
The second place letter has 25 options.
The third place digit has 10 options.
The fourth place digit has 9 options.
The fifth place digit has 8 options.
The sixth place digit has 7 options.
The seventh place digit has 6 options.
Applying the basic principle of counting, number of license plates will be
Want to see more full solutions like this?
Chapter 1 Solutions
A First Course in Probability (10th Edition)
Additional Math Textbook Solutions
Elementary Statistics
Thinking Mathematically (6th Edition)
University Calculus: Early Transcendentals (4th Edition)
Precalculus
Pre-Algebra Student Edition
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- Q1. A group of five applicants for a pair of identical jobs consists of three men and two women. The employer is to select two of the five applicants for the jobs. Let S denote the set of all possible outcomes for the employer's selection. Let A denote the subset of outcomes corresponding to the selection of two men and B the subset corresponding to the selection of at least one woman. List the outcomes in A, B, AUB, AN B, and An B. (Denote the different men and women by M₁, M2, M3 and W₁, W2, respectively.)arrow_forwardQ3 (8 points) Q3. A survey classified a large number of adults according to whether they were diag- nosed as needing eyeglasses to correct their reading vision and whether they use eyeglasses when reading. The proportions falling into the four resulting categories are given in the following table: Use Eyeglasses for Reading Needs glasses Yes No Yes 0.44 0.14 No 0.02 0.40 If a single adult is selected from the large group, find the probabilities of the events defined below. The adult (a) needs glasses. (b) needs glasses but does not use them. (c) uses glasses whether the glasses are needed or not.arrow_forward4. (i) Let a discrete sample space be given by N = {W1, W2, W3, W4}, and let a probability measure P on be given by P(w1) = 0.2, P(w2) = 0.2, P(w3) = 0.5, P(wa) = 0.1. Consider the random variables X1, X2 → R defined by X₁(w1) = 1, X₁(w2) = 2, X2(w1) = 2, X2 (w2) = 2, Find the joint distribution of X1, X2. (ii) X1(W3) = 1, X₁(w4) = 1, X2(W3) = 1, X2(w4) = 2. [4 Marks] Let Y, Z be random variables on a probability space (, F, P). Let the random vector (Y, Z) take on values in the set [0, 1] x [0,2] and let the joint distribution of Y, Z on [0, 1] x [0,2] be given by 1 dPy,z (y, z) ==(y²z+yz2) dy dz. harks 12 Find the distribution Py of the random variable Y. [8 Marks]arrow_forward
- marks 11 3 3/4 x 1/4 1. There are 4 balls in an urn, of which 3 balls are white and 1 ball is black. You do the following: draw a ball from the urn at random, note its colour, do not return the ball to the urn; draw a second ball, note its colour, return the ball to the urn; finally draw a third ball and note its colour. (i) Describe the corresponding discrete probability space (Q, F, P). [9 Marks] (ii) Consider the following event, A: Among the first and the third balls, one ball is white, the other is black. Write down A as a subset of the sample space and find its probability, P(A). [2 Marks]arrow_forwardThere are 4 balls in an urn, of which 3 balls are white and 1 ball isblack. You do the following:• draw a ball from the urn at random, note its colour, do not return theball to the urn;• draw a second ball, note its colour, return the ball to the urn;• finally draw a third ball and note its colour.(i) Describe the corresponding discrete probability space(Ω, F, P). [9 Marks](ii) Consider the following event,A: Among the first and the third balls, one ball is white, the other is black.Write down A as a subset of the sample space Ω and find its probability, P(A)arrow_forwardLet (Ω, F, P) be a probability space and let X : Ω → R be a randomvariable whose probability density function is given by f(x) = 12 |x|e−|x| forx ∈ R.(i) Find the characteristic function of the random variable X.[8 Marks](ii) Using the result of (i), calculate the first two moments of therandom variable X, i.e., E(Xn) for n = 1, 2. [6 Marks]Total marks 16 (iii) What is the variance of X?arrow_forward
- ball is drawn from one of three urns depending on the outcomeof a roll of a dice. If the dice shows a 1, a ball is drawn from Urn I, whichcontains 2 black balls and 3 white balls. If the dice shows a 2 or 3, a ballis drawn from Urn II, which contains 1 black ball and 3 white balls. Ifthe dice shows a 4, 5, or 6, a ball is drawn from Urn III, which contains1 black ball and 2 white balls. (i) What is the probability to draw a black ball? [7 Marks]Hint. Use the partition rule.(ii) Assume that a black ball is drawn. What is the probabilitythat it came from Urn I? [4 Marks]Total marks 11 Hint. Use Bayes’ rulearrow_forwardLet X be a random variable taking values in (0,∞) with proba-bility density functionfX(u) = 5e^−5u, u > 0.Let Y = X2 Total marks 8 . Find the probability density function of Y .arrow_forwardLet P be the standard normal distribution, i.e., P is the proba-bility measure on R, B(R) given bydP(x) = 1√2πe− x2/2dx.Consider the random variablesfn(x) = (1 + x2) 1/ne^(x^2/n+2) x ∈ R, n ∈ N.Using the dominated convergence theorem, prove that the limitlimn→∞E(fn)exists and find itarrow_forward
- 13) Consider the checkerboard arrangement shown below. Assume that the red checker can move diagonally upward, one square at a time, on the white squares. It may not enter a square if occupied by another checker, but may jump over it. How many routes are there for the red checker to the top of the board?arrow_forward12) The prime factors of 1365 are 3, 5, 7 and 13. Determine the total number of divisors of 1365.arrow_forward11) What is the sum of numbers in row #8 of Pascal's Triangle?arrow_forward
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell