A First Course in Probability (10th Edition)
10th Edition
ISBN: 9780134753119
Author: Sheldon Ross
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 1, Problem 1.10P
In how many ways can 8 people be seated in a row if
a. there are no restrictions on the seating arrangement?
b. persons A and B must sit next to each other?
c. there are 4 men and 4 women and no 2 men or 2 women can sit next to each other?
d. there are 5 men and they must sit next to one another?
e. there are 4 married couples and each couple must sit together?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem: The probability density function of a random variable is given by the exponential
distribution
Find the probability that
f(x) = {0.55e-0.55 x 0 < x, O elsewhere}
a. the time to observe a particle is more than 200 microseconds.
b. the time to observe a particle is less than 10 microseconds.
Unknown to a medical researcher, 7 out of 24 patients have a heart problem that will result in death if they receive the test drug. 5 patients are randomly selected to receive the drug and the rest receive a placebo. What is the probability that less than 4 patients will die? Express as a fraction or a decimal number rounded to four decimal places.
Was wanting to check if my calculations were correct
Suppose 52% of the population has a college degree.
If a random sample of size 808 is selected, what is the probability that the proportion of persons with a college degree will be less than 54%?
Round to four decimal places.
after following the formula I got 0.8724
Chapter 1 Solutions
A First Course in Probability (10th Edition)
Ch. 1 - a. How many different 7-place license plates are...Ch. 1 - How many outcome sequences are possible ten a die...Ch. 1 - Twenty workers are to be assigned to 20 different...Ch. 1 - John, Jim, Jay, and Jack have formed a band...Ch. 1 - For years, telephone area codes in the United...Ch. 1 - A well-known nursery rhyme starts as follows: As I...Ch. 1 - a. In how many ways can 3 boys and 3 girls sit in...Ch. 1 - When all letters are used, how many different...Ch. 1 - A child has 12 blocks, of which 6 are black, 4 are...Ch. 1 - In how many ways can 8 people be seated in a row...
Ch. 1 - In how many ways can 3 novels. 2 mathematics...Ch. 1 - How many 3 digit numbers zyz, with x, y, z all...Ch. 1 - How many different letter permutations, of any...Ch. 1 - Five separate awards (best scholarship, best...Ch. 1 - Consider a group of 20 people. If everyone shakes...Ch. 1 - How many 5-card poker hands are there?Ch. 1 - A dance class consists of 22 students, of which 10...Ch. 1 - A student has to sell 2 books from a collection of...Ch. 1 - Seven different gifts are to be distributed among...Ch. 1 - A committee of 7, consisting of 2 Republicans, 2...Ch. 1 - From a group of 8 women and 6 men, a committee...Ch. 1 - A person has 8 friends, of whom S will be invited...Ch. 1 - Consider the grid of points shown at the top of...Ch. 1 - In Problem 23, how many different paths are there...Ch. 1 - A psychology laboratory conducting dream research...Ch. 1 - Show k=0n(nk)2k=3n Simplify k=0n(nk)xkCh. 1 - Expand (3x2+y)5.Ch. 1 - The game of bridge is played by 4 players, each of...Ch. 1 - Expand (x1+2x2+3x3)4.Ch. 1 - If 12 people are to be divided into 3 committees...Ch. 1 - If 8 new teachers are to be divided among 4...Ch. 1 - Ten weight lifters are competing in a team...Ch. 1 - Delegates from 10 countries, including Russia,...Ch. 1 - If 8 identical blackboards are to be divided among...Ch. 1 - An elevator starts at the basement with 8 people...Ch. 1 - We have 520.000 that must be invested among 4...Ch. 1 - Suppose that 10 fish are caught at a lake that...Ch. 1 - Prove the generalized version of the basic...Ch. 1 - Two experiments are to be performed. The first can...Ch. 1 - In how many ways can r objects be selected from a...Ch. 1 - There are (nr) different linear arrangements of n...Ch. 1 - Determine the number of vectors (x1,...,xn), such...Ch. 1 - How many vectors x1,...,xk are there for which...Ch. 1 - Give an analytic proof of Equation (4.1).Ch. 1 - Prove that (n+mr)=(n0)(mr)+(n1)(mr1)+...+(nr)(m0)...Ch. 1 - Use Theoretical Exercise 8 I to prove that...Ch. 1 - From a group of n people, suppose that we want to...Ch. 1 - The following identity is known as Fermats...Ch. 1 - Consider the following combinatorial identity:...Ch. 1 - Show that, for n0 ,i=0n(1)i(ni)=0 Hint: Use the...Ch. 1 - From a set of n people, a committee of size j is...Ch. 1 - Let Hn(n) be the number of vectors x1,...,xk for...Ch. 1 - Consider a tournament of n contestants in which...Ch. 1 - Present a combinatorial explanation of why...Ch. 1 - Argue...Ch. 1 - Prove the multinomial theorem.Ch. 1 - In how many ways can n identical balls be...Ch. 1 - Argue that there are exactly (rk)(n1nr+k)...Ch. 1 - Prob. 1.22TECh. 1 - Determine the number of vectors (xi,...,xn) such...Ch. 1 - How many different linear arrangements are there...Ch. 1 - If 4 Americans, 3 French people, and 3 British...Ch. 1 - A president. treasurer, and secretary. all...Ch. 1 - A student is to answer 7 out of 10 questions in an...Ch. 1 - In how many ways can a man divide 7 gifts among...Ch. 1 - How many different 7-place license plates are...Ch. 1 - Give a combinatorial explanation of the...Ch. 1 - Consider n-digit numbers where each digit is one...Ch. 1 - Consider three classes, each consisting of n...Ch. 1 - How many 5-digit numbers can be formed from the...Ch. 1 - From 10 married couples, we want to select a group...Ch. 1 - A committee of 6 people is to be chosen from a...Ch. 1 - An art collection on auction consisted of 4 Dalis,...Ch. 1 - Prob. 1.14STPECh. 1 - A total of n students are enrolled in a review...Ch. 1 - Prob. 1.16STPECh. 1 - Give an analytic verification of...Ch. 1 - In a certain community, there are 3 families...Ch. 1 - If there are no restrictions on where the digits...Ch. 1 - Verify the...Ch. 1 - Simplify n(n2)+(n3)...+(1)n+1(nn)
Additional Math Textbook Solutions
Find more solutions based on key concepts
A categorical variable has three categories, with the following frequencies of occurrence: a. Compute the perce...
Basic Business Statistics, Student Value Edition
Consider the Source. In Exercises 5–8, determine whether the given source has the potential to create a bias in...
Elementary Statistics (13th Edition)
What is the domain and the range of y=secx ?
Precalculus
Explain the meaning of the term “statistically significant difference” in statistics terminology.
Intro Stats, Books a la Carte Edition (5th Edition)
4. You construct a 95% confidence interval for a population mean using a random sample. The confidence interval...
Elementary Statistics: Picturing the World (7th Edition)
Expanding isosceles triangle The legs of an isosceles right triangle increase in length at a rate of 2 m/s. a. ...
Calculus: Early Transcendentals (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Similar questions
- At the beginning of each semester, students at the University of Minnesota receive one prepaid copy card that allows them to print from the copiers and printers on campus. The amount of money remaining on the card can be modeled by a linear equation where A represents how much remains on the card (in dollars) and p represents the number of pages that the student has printed. The graph of this linear equation is given below. 100 90 80 70 60 50 40 30 20 10 0 A = Amount on Card ($) 0 200 400 600 800 1000 1200 1400 1600 p = Number of Pages Printed What information does the vertical intercept tell you (represent) for this problem? Be sure to include specific details in your answer -- your answer should have both quantitative and qualitative data to describe the answer in terms of the question.arrow_forwardData management no 2 thanksarrow_forwardG12 Data Management please help on the first question no 1 belowarrow_forward
- Total marks 14 4. Let X and Y be random variables on a probability space (N, F, P) that take values in [0, ∞). Assume that the joint density function of X and Y on [0, ∞) × [0, ∞) is given by f(x, y) = 2e-2x-y Find the probability P(0 ≤ X ≤ 1,0 ≤ y ≤ 2). (ii) spectively. [6 Marks] Find the the probability density function of X and Y, re- [5 Marks] 111) Are the X and Y independent? Justify your answer! [3 Marks]arrow_forwardTotal marks 17 4. Let (,,P) be a probability space and let X : → R be a ran- dom variable that has Gamma(2, 1) distribution, i.e., the distribution of the random variable X is the probability measure on ((0, ∞), B((0, ∞))) given by (i) dPx(x) = xex dx. Find the characteristic function of the random variable X. [8 Marks] (ii) Using the result of (i), calculate the first three moments of the random variable X, i.e., E(X") for n = 1, 2, 3. Using Markov's inequality involving E(X³), (iii) probability P(X > 10). [6 Marks] estimate the [3 Marks]arrow_forward1. There are 8 balls in an urn, of which 6 balls are red, 1 ball is blue and 1 ball is white. You draw a ball from the urn at random, note its colour, do not return the ball to the urn, and then draw a second ball, note its colour, do not return the ball to the urn, and finally draw a third ball, note its colour. (i) (Q, F, P). Describe the corresponding discrete probability space [7 Marks] (ii) Consider the following event, A: At least one of the first two balls is red.arrow_forward
- 3. Consider the following discrete probability space. Let = {aaa, bbb, ccc, abc, acb, bac, bca, cab, cba}, i.e., consists of 3-letter 'words' aaa, bbb, ccc, and all six possible 3-letter 'words' that have a single letter a, a single letter b, and a single letter c. The probability measure P is given by 1 P(w) = for each weΩ. 9 Consider the following events: A: the first letter of a 'word' is a, B: the second letter of a 'word' is a, C: the third letter of a 'word' is a. answer! Decide whether the statements bellow are true or false. Justify your (i) The events A, B, C are pairwise independent. (ii) The events A, B, C are independent. Total marks 7 [7 Marks]arrow_forwardLet X and Y have the following joint probability density function: fxy(x,y) =1/(x²²), for >>1, y>1 0, otherwise Let U = 5XY and V = 3 x. In all question parts below, give your answers to three decimal places (where appropriate). (a) The non-zero part of the joint probability density function of U and V is given by fu,v(u,v) = A√³uc for some constants A, B, C. Find the value of A. Answer: 5 Question 5 Answer saved Flag question Find the value of B. Answer: -1 Question 6 Answer saved P Flag question (b) The support of (U,V), namely the values of u and vthat correspond to the non-zero part of fu,v(u,v) given in part (a), is given by:arrow_forwardTotal marks 13. 3. There are three urns. Urn I contains 3 blue balls and 5 white balls; urn II contains 2 blue balls and 6 white balls; urn III contains 4 blue balls and 4 white balls. Rolling a dice, if 1 appears, we draw a ball from urn I; if 4 or 5 or 6 appears, we draw a ball from urn II; if 2, or 3 appears, we draw a ball from urn III. (i) What is the probability to draw a blue ball? [7 Marks] (ii) Assume that a blue ball is drawn. What is the probability that it came from Urn I? [6 Marks] Turn over. MA-252: Page 3 of 4arrow_forward
- 3. Consider the discrete probability space with the sample space = {a, b, c, d, e, f, g, h} and the probability measure P given by P(w) for each wEN. Consider the following events: A = {a, c, e, g}, B = {b, c, d, e}, C = = {a, b, d, g}. Decide whether the statements bellow are true or false. Justify your answer! (i) The events A, B, C are pairwise independent. (ii) The events A, B, C are independent. Total marks 6 [6 Marks]arrow_forward2. space Consider the discrete probability space (N, F, P) with the sample N = {W1 W2 W3 W4 W5, W6, W7, W8, W9, W10, W11, W12}, is the power of 2, and the probability measure P is given by 1 P(wi) for each i = 1, 12. 12 Consider the following events: A = {W1, W3, W5, W7, W9, W11}, C = B = {W1, WA, W7, W8, W9, W12}, = {W3, WA, W5, W6, W9, W12}. Decide whether the statements bellow are true or false. Justify your answer! (i) The events A, B, C are pairwise independent. [5 Marks] Total marks 8 (ii) The events A, B, C are independent. [3 Marks]arrow_forwardshould my answer be 2.632 or -2.632?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,
Find number of persons in a part with 66 handshakes Combinations; Author: Anil Kumar;https://www.youtube.com/watch?v=33TgLi-wp3E;License: Standard YouTube License, CC-BY
Discrete Math 6.3.1 Permutations and Combinations; Author: Kimberly Brehm;https://www.youtube.com/watch?v=J1m9sB5XZQc;License: Standard YouTube License, CC-BY
How to use permutations and combinations; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=NEGxh_D7yKU;License: Standard YouTube License, CC-BY
Permutations and Combinations | Counting | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=0NAASclUm4k;License: Standard Youtube License
Permutations and Combinations Tutorial; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=XJnIdRXUi7A;License: Standard YouTube License, CC-BY