A gas-turbine power plant operates on the regenerative Brayton cycle between the pressure limits of 100 and 700 kPa. Air enters the compressor at 30°C at a rate of 12.6 kg/s and leaves at 260°C. It is then heated in a regenerator to 400°C by the hot combustion gases leaving the turbine. A diesel fuel with a heating value of 42,000 kJ/kg is burned in the combustion chamber with a combustion efficiency of 97 percent. The combustion gases leave the combustion chamber at 871°C and enter the turbine, whose isentropic efficiency is 85 percent. Treating combustion gases as air and using constant specific heats at 500°C, determine (a) the isentropic efficiency of the compressor, (b) the effectiveness of the regenerator, (c) the air–fuel ratio in the combustion chamber, (d) the net power output and the back work ratio, (e) the thermal efficiency, and (f) the second-law efficiency of the plant. Also determine (g) the second-law efficiencies of the compressor, the turbine, and the regenerator, and (h) the rate of the exergy flow with the combustion gases at the regenerator exit.
a)
The isentropic efficiency of the compressor.
Answer to Problem 152P
The isentropic efficiency of the compressor is
Explanation of Solution
Draw the layout of the gas-turbine plant functioning on the regenerative Brayton cycle as shown in Figure (1).
Consider, the pressure is
Write the expression to calculate the temperature and pressure relation ratio for the isentropic compression process 1-2s.
Here, the specific heat ratio is k.
Write the expression to calculate the isentropic efficiency of the compressor
Write the expression to calculate the temperature and pressure relation ratio for the expansion process 3-4s.
Write the expression for the isentropic efficiency of the turbine
Conclusion:
From Table A-2b, “Ideal-gas specific heats of various common gases”, obtain the following values of air at
Substitute 303 K for
Substitute 303 K for
Thus, the isentropic efficiency of the compressor is
Substitute 1144 K for
Substitute 1144 K for
b)
The effectiveness of the regenerator for regenerative Brayton cycle.
Answer to Problem 152P
The effectiveness of the regenerator for regenerative Brayton cycle is
Explanation of Solution
Write the expression to calculate the effectiveness of the regenerator
Conclusion:
Substitute 673 K for
Thus, the effectiveness of the regenerator for regenerative Brayton cycle is
c)
The air-fuel ratio in the combustion chamber.
Answer to Problem 152P
The air-fuel ratio in the combustion chamber is
Explanation of Solution
Write the expression for the heat input for the regenerative Brayton cycle
Here, the specific heat at constant pressure is
Write the expression to calculate the air-fuel ratio in the combustion chamber (AF).
Write the expression to calculate the total mass of the air-fuel mixture
Write the expression to calculate the heat input for the regenerative cycle
Conclusion:
Substitute
Substitute
Thus, the air-fuel ratio in the combustion chamber is
Substitute
Substitute
d)
The net power developed by the gas-turbine plant and the back work ratio for the gas-turbine plant.
Answer to Problem 152P
The net power developed by the gas-turbine plant is
The back work ratio for the gas-turbine plant is
Explanation of Solution
Write the expression to calculate the power given to the compressor
Write the expression to calculate the power developed by the turbine
Write the expression to calculate the net power developed by the gas-turbine plant
Write the expression to calculate the back work ratio for the gas-turbine plant
Conclusion:
Substitute
Substitute
Substitute 3168 kW for
Thus, the net power developed by the gas-turbine plant is
Substitute 3168 kW for
Thus, the back work ratio for the gas-turbine plant is
e)
The thermal efficiency of the gas-turbine plant.
Answer to Problem 152P
The thermal efficiency of the gas-turbine plant is
Explanation of Solution
Write the expression to calculate the thermal efficiency of the gas-turbine plant
Conclusion:
Substitute 2266 kW for
Thus, the thermal efficiency of the gas-turbine plant is
f)
The second-law efficiency of the gas-turbine plant.
Answer to Problem 152P
The second-law efficiency of the gas-turbine plant is
Explanation of Solution
Write the expression to calculate the second-law efficiency of the gas-turbine plant
Here, the maximum possible efficiency of the gas-turbine plant is
Write the expression to calculate the maximum possible efficiency of the gas-turbine plant.
Conclusion:
Substitute 303 K for
Substitute 0.735 for
Thus, the second-law efficiency of the gas-turbine plant is
g)
The exergy efficiency for compressor , turbine and regenerator.
Answer to Problem 152P
The exergy efficiency for the compressor is
The exergy efficiency for the turbine is
The exergy efficiency for the regenerator is
Explanation of Solution
Write the expression to calculate the stream exergy difference between the inlet and exit of the compressor
Here, the temperature of the surroundings is
Write the expression to calculate the exergy efficiency for the compressor
Write the expression to calculate the stream exergy difference between the inlet and exit of the turbine
Write the expression to calculate the exergy efficiency for the turbine
Applying energy balance for the regenerator process.
Write the expression to calculate the exergy increase of the cold fluid for the regenerator
Write the expression to calculate the exergy decrease of the cold fluid for the regenerator
Write the expression to calculate the exergy efficiency for the regenerator
Conclusion:
Substitute
Substitute
Thus, the exergy efficiency for the compressor is
Substitute
Substitute
Thus, the exergy efficiency for the turbine is
substitute
Substitute
Substitute
Substitute
Thus, the exergy efficiency for the regenerator is
h)
The rate of exergy of the combustion gases at the regenerator exit.
Answer to Problem 152P
The rate of exergy of the combustion gases at the regenerator exit is
Explanation of Solution
Write the expression to calculate the rate of exergy of the combustion gases at the regenerator exit
Conclusion:
Substitute
Thus, the rate of exergy of the combustion gases at the regenerator exit is
Want to see more full solutions like this?
Chapter 9 Solutions
THERMODYNAMICS (LL)-W/ACCESS >CUSTOM<
- An external pressure of 12 MPa is applied to a closed-end thick cylinder of internal diameter 150 mm and external diameter 300 mm. If the maximum hoop stress on the inner surface of the cylinder is limited to 30 MPa: (a) What maximum internal pressure can be applied to the cylinder? (b) Sketch the variation of hoop and radial stresses across the cylinder wall. (c) What will be the change in the outside diameter when the above pressure is applied? [Take E = 207 GPa and v = 0.29]arrow_forwardso A 4 I need a detailed drawing with explanation し i need drawing in solution motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the か ---2-125 750 x2.01 98Parrow_forwardFigure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A 45 B Space Diagram o NTS (Not-to-Scale) C Darrow_forward
- I need a detailed drawing with explanation so Solle 4 يكا Pax Pu + 96** motion is as follows; 1- Dwell 45°. Plot the displacement diagram for a cam with flat follower of width 14 mm. The required 2- Rising 60 mm in 90° with Simple Harmonic Motion. 3- Dwell 90°. 4- Falling 60 mm for 90° with Simple Harmonic Motion. 5- Dwell 45°. cam is 50 mm. Then design the cam profile to give the above displacement diagram if the minimum circle diameter of the 55 ---20125 750 X 2.01 1989arrow_forwardAshaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forwardchanism shown in figure below, the crank OA rotates at 60 RPM counterclockwise. The velocity diagram is also drawn to scale (take dimensions from space diagram). Knowing that QCD is rigid plate, determine: a. Linear acceleration of slider at B, b. Angular acceleration of the links AC, plate CQD, and BD. D Space Diagram Scale 1:10 A ES a o,p,g b Velocity Diagram Scale 50 mm/(m/s) darrow_forward
- A thick closed cylinder, 100 mm inner diameter and 200 mm outer diameter is subjected to an internal pressure of 230 MPa and outer pressure of 70 MPa. Modulus of elasticity, E=200 GPa. and Poisson's ratio is 0.3, determine: i) The maximum hoop stress ii) The maximum shear stress iii) The new dimension of the outer diameter due to these inner and outer pressures.arrow_forwardA ә レ shaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNm 20,000 10,000 495 Crank angle 8 degrees 270 0 90 か ---20125 750 X 2.01 44 720 sarrow_forwardThe gas tank is made from A-36 steel (σy = 250 MPa) and has an inner diameter of 3.50 m. If the tank is designed to withstand a pressure of 1.2 MPa, determine the required minimum wall thickness to the nearest millimeter using (a) The maximum-shear-stress theory (b) Maximum distortion- energy theory. Apply a factor of safety of 1.5 against yielding.arrow_forward
- ә レ Figure below shows a link mechanism in which the link OA rotates uniformly in an anticlockwise direction at 10 rad/s. the lengths of the various links are OA=75 mm, OB-150 mm, BC=150 mm, CD-300 mm. Determine for the position shown, the sliding velocity of D. A A B # Space Diagram o NTS (Not-to-Scale) C 10 =--20125 735) 750 x2.01 اهarrow_forward2 レ Tanism in which the link OA mm. O anticlockwise direction at 10 rad/s, the lengths of the various links are OA=75mm, OB=150mm, BC=150mm,CD=300mm. Determine for the position shown, the sliding velocity of D. A A Space Diagram o NT$ (Not-to-Scale) B # C か 750 x2.01 165 79622arrow_forwardAshaft fitted with a flywheel rotates at 300 rpm. and drives a machine. The torque required to drive the machine varies in a cyclic manner over a period of 2 revolutions. The torque drops from 20,000 Nm to 10,000 Nm uniformly during 90 degrees and remains constant for the following 180 degrees. It then rises uniformly to 35,000 Nm during the next 225 degrees and after that it drops to 20,000 in a uniform manner for 225 degrees, the cycle being repeated thereafter. Determine the power required to drive the machine and percentage fluctuation in speed, if the driving torque applied to the shaft is constant and the mass of the flywheel is 12 tonnes with radius of gyration of 500 mm. What is the maximum angular acceleration of the flywheel. 35,000 TNM 20,000 10,000 0 90 270 495 Crank angle 8 degrees 720arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY