FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 27P
Verify that the steady; two-dimensional, incompressible velocity filed of Prob. 9-13 satisfies the continuity eqution. Stay in Cartesian coordinate andshow all your work.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4-17 Converging duct flow is modeled by the steady,
two-dimensional velocity field of Prob. 4-16. The pressure
field is given by
P = Po
2U,bx + b°(x² + y°)
where P, is the pressure at x = 0. Generate an expression for
the rate of change of pressure following a fluid particle.
Dentrance
x=0
uentrance
FIGURE P4-21
u(x)
lexit
x = L
Dexit
4-22 For the velocity field of Prob. 4-21, calculate the
fluid acceleration along the diffuser centerline as a function
of x and the given parameters. For L = 1.56 m, uentrance =
22.6 m/s, and exit = 17.5 m/s, calculate the acceleration at
x = 0 and x = 1.0 m. Answers: 0, -96.4 m/s²
omponents, desert ant
Fig. 3-16a, starting from home. At the end of the fifth run,
what are the magnitude and angle of the ant's net displace-
ment vector dnet, and what are those of the homeward vec-
tor dhome that extends from the ant's final position back
to home? In a real situation, such vector calculations might
involve thousands of such runs.
Chapter 9 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Select the correct answerarrow_forwardNeeds Complete typed solution with 100 % accuracy.arrow_forwardFind speed of two points on a tire VANTI DAVANT DAVANT DAVANTE The diameter of a tire is 38 cm. When the tire is spinning at its maximum rate 300 rpm, What is the speed of yellow dot at distance of 15 cm ? And blue dot at 30 cm ? What do you conclude?arrow_forward
- A Fluid Mechanics, Third Edition - Free PDF Reader E3 Thumbnails 138 FLUID KINEMATICS Fluid Mechanies Fundamenteis and Applicationu acceleration); this term can be nonzero even for steady flows. It accounts for the effect of the fluid particle moving (advecting or convecting) to a new location in the flow, where the velocity field is different. For example, nunan A Çengel | John M. Cinbala consider steady flow of water through a garden hose nozzle (Fig. 4-8). We define steady in the Eulerian frame of reference to be when properties at any point in the flow field do not change with respect to time. Since the velocity at the exit of the nozzle is larger than that at the nozzle entrance, fluid particles clearly accelerate, even though the flow is steady. The accel- eration is nonzero because of the advective acceleration terms in Eq. 4-9. FLUID MECHANICS FIGURE 4-8 Flow of water through the nozzle of a garden hose illustrates that fluid par- Note that while the flow is steady from the…arrow_forwardb. At the bottom of the ramp, find the ratio of the object's rotational kinetic energy to its translational kinetic energy- Nat Nranarrow_forwardQ4) Set up the differential equations for the two masses [Fig.1] 2cos (3t) Fig. 1 C1 K1 M1 K2 М2 K3arrow_forward
- Kindly solve Question 2 complete only this is complete Question 2 nothing more information is provided for this questionarrow_forward(c) Sketch a plot of where the x-component of the acceleration stagnates between -5 0, x < 0, and y = 0? Why? v = DO NOT U DO NOT UPI PLOAD TO can UPL TOarrow_forwardCan you please explain how to solve streamlines, pathlines and streaklines please. I would like to know the process of each one and what steps/ rules I should follow.arrow_forward
- you analyzed for me this question that was velocity analysis but now I want solution acceleration analysis with polygons methodarrow_forwardFind the equation of motion (Navier Stokes) for a viscous fluid between two rotating concentric cylinders (axle and shaft). The inner cylinder has the radius ro and rotates at angular speed wo. The outer cylinder has the radius R and is stationary. Write down each vector component of the equation in a separate line and use reasonable assumptions to simplify the equation, especially the derivatives. Be sure to use cylindrical coordinates for the convective operator and the other derivatives.arrow_forwardPLS SHOW ME FULL STEPS SIR PLS ANSWER WITHIN 30 MIN SIR SUBJECT (FLUID MECH 2)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license