FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 106P
To determine
Weather the both equation is same or not.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The stress tensor at a point P is given with respect to the axes Ox1*2x3 by the values
/3 1
1'
1
0 2
1 2 0,
(Unit : kPa)
Determine the principal stress values and the principal stress directions represented
by the axes Ox†x*x;.
Evaluate the first, second and third stress invariants of the stress tensor given
4
3. Vector and Tensors
Consider the following tensor:
--()
3
2 -1
T =
2
1
1
4.
and the vector, v = 5e,+3e, - 2e,. Determine the followings: T v; v T; Vv, and T : T
Chapter 9 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2) Show that y = A cos x + Bsin x, where A and B are constants, is a general solution of the differential equation d²y + y = 0 dx2 Hence, find the solution of this equation subject to the following boundary conditions y(0) = 1, = 1 (cos, sin) S A Unit Circle sin tan = Quadrant II: cos Quadrant I: - + + (0, 1) 2'2 2 2'2 90° 120° 60° 4 135° 45° 150° 30° 180° 0° (-1,0) (1, 0) 360° 210° 330° 117 6 (목) 225° 315° 240° 300° 4 270° 3 2 2 2 (0, –1) C Quadrant Ill: Quadrant IV: 프_3arrow_forwardThe 3-dimensional state of strain at a material point in x, y, z Q4 coordinates is given by: E XX [ε] = E xy Exz E EN E ZX Ezy Eyz E ZZ || -120 0-150 0 0 0 -150 0 240 *10-6 Calculate the volumetric strain and the deviatoric strain invariants (b) Calculate the mean stress and the deviatoric stress tensor (c) Write the characteristic equation of strain (d) Write the characteristic equation of stress The material is linear elastic (E=210GPa, v=0.3).arrow_forwardX₁ = X₁ + 2X3, x2 = X₂ - 2X3, X3 = −2X₁ + 2X2 + X3 Consider the two line elements dX(¹) = ₁, dX(²) = ₂ emanating from the the origin (0, 0,0). Use the Right Cauchy Green strain tensor to determine whether these elements in the current configuration (dr(¹), dx(²)) are perpendicular. Use the Right Cauchy-Green strain tensor to evaluate the stretch of the line ele- ment dX = ₁ +ē2, and hence determine whether the element contract, stretches, or stays the same lenght after deformation. Determine the Green-Lagrangian and Eulerian strain tensors. Decompose the deformation into a stretching and rotation tensors. Describe what kind of deformation the body is undergoing by including what the prin- cipal stretches are and the type of rotation the body is undergoing.arrow_forward
- [Q1] Find the resultant for the force system shown below: 700 N 450 N 300 Ν |30 60° В 1500 N-m to - 3 m - -2 m - -4 marrow_forwardAn ex vivo sample of human skin is experimentally subjected to a displacement field given by the attachment where A is a constant. Determine: a. small strain tensor b. Lagrange strain tensor c. whether there are differences between the small strain tensor and Lagrange strain tensor. Explain under what conditions the two tensors would be approximately equal.arrow_forwardi need the answer quicklyarrow_forward
- Calculate the applied force on the below object and show the exact location of the force. ▷ Each unit ▷ g = 10 m/s² 100 gr 30 앙 E X 30arrow_forwardPlease do it Fastarrow_forwardThe stress tensor below is given for x, y, z coordinate system. Find the stress tensor if x, ycoordinates are rotated 45° clockwise.[?] = 4 1 2 1 6 0 2 0 8arrow_forward
- A two-dimensional Cauchy stress tensor is given as o=to n₁ + ani n2, where t is an arbitrary vector and n₁ and nå are orthogonal unit vectors. (a) Describe graphically the state of stress. (b) Determine the value of a (hint: o must be symmetric).arrow_forwardPravinbhaiarrow_forwardIn the conventional vector basis {ei, e, e}, the stress tensor o at a given point is represented by the matrix 0 [g] = -30 25 a. Find the traction vector allel to vector u, with {u} = {1, 1,0}. 1 -30 25 -40 -15 MPa -15 0 (2) (force per unit area) relative to the element of area with normal vector în par- b. Find the stress components 032 = 023 in a new basis, such that the new basis is obtained by a CCW rotation of the old basis by a 0 = 60° about x3 axis, i.e., the rotation is only in ₁ - 2 plane.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license