FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 74P
To determine
The value of the
The value of the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Hello sir Muttalibi is a step
solution in detailing
mathematics the same as an
existing step solution
EXAMPLE 6-1
Momentum-Flux Correction Factor
for Laminar Pipe Flow
CV
Vavg
Consider laminar flow through a very long straight section of round pipe. It
is shown in Chap. 8 that the velocity profile through a cross-sectional area of
the pipe is parabolic (Fig. 6-15), with the axial velocity component given by
r4
V
R
V = 2V
1
avg
R2
(1)
where R is the radius of the inner wall of the pipe and Vavg is the average
velocity. Calculate the momentum-flux correction factor through a cross sec-
tion of the pipe for the case in which the pipe flow represents an outlet of
the control volume, as sketched in Fig. 6-15.
Assumptions 1 The flow is incompressible and steady. 2 The control volume
slices through the pipe normal to the pipe axis, as sketched in Fig. 6-15.
Analysis We substitute the given velocity profile for V in Eq. 6-24 and inte-
grate, noting that dA, = 2ar dr,
FIGURE 6–15
%3D
Velocity…
Please don't provide handwritten solution .....
Please help me in answering the following practice question. Thank you for your help. Consider several elementary planar irrotational flows arranged in a plane in a cartesian coordinate system (x-y plane) with the unit of length in m (meter). A line source with strength 18 m^2/s is located at point A (0, 1); a line sink with strength of 15 m^2/s is located at point B (3, -2); a line vortex with strength of 9 m^2/s is located at point C (4, 1); and a uniform flow of 10 m/s is at angle 30° with positive x-direction (counter-clockwise). Find the resultant velocity and pressure induced at point D (2, 0) by the uniform stream, line source, line sink & line vortex. Pressure at the infinity at upstream of uniform flow is 1000 Pa.Please list all necessary assumptions.
Chapter 9 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please also explain.arrow_forwardhe velocity at apoint in aflued for one-dimensional Plow wmay be aiven in The Eutkerian coordinater by U=Ax+ Bt, Show That X Coordinates Canbe obtained from The Eulerian system. The intial position by Xo and The intial time to zo man be assumeal · 1. x = foxo, yo) in The Lagrange of The fluid parficle is designatedarrow_forwardBernoulli’s principle and the continuity equation. Give alsoan example of their real-life application.arrow_forward
- Detailed Solutionarrow_forwardI want to answer all the questions by handwriting.arrow_forwardD--- p, FIGURE P7-62 7–63 Consider laminar flow through a long section of pipe, as in Fig. P7–62 0. For laminar flow it turns out that wall roughness is not a relevant parameter unless e is very large. The volume flow rate b through the pipe is a function of pipe diameter D, fluid viscosity µ, and axial pressure gradient dPldx. If pipe diameter is doubled, all else being equal, by what factor will volume flow rate increase? Use dimensional analysis.arrow_forward
- pls answer question with steparrow_forwardThevelocity components in thex and y directions are given by u = Ary3 – x²y, v = xy? -÷y*. The value of 1 for a possible flow field involving an incompressible fluid isarrow_forwardThe continuity equation is also known as (a) Conservation of mass (b) Conservation of energy (c) Conservation of momentum (d ) Newton’s second law (e) Cauchy’s equationarrow_forward
- Which choice is the general differential equation form of the continuity equation for a control volume?arrow_forward1. An incompressible fluid flows past a flat plate, as in the figure below, with a uniform inlet velocity profile and a polynomial exit profile given by V₁ = Vo where n = - Derive an expression for the volumetric flow rate Q across the top surface of the control volume. The plate has width W into the paper. e 31-1³ 2 Voarrow_forwardAn ocean liner is sailing north at a rate of 13 miles per hour. The ocean current is flowing N-10°-W at a rate of 5 miles per hour. What is the ve- locity of the boat relative to land and what direction is the ship traveling?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license