FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 6CP
To determine
The number of unknowns for a three-dimensional, unsteady and compressible flow field.
The equations required to solve for these unknowns.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
For an unsteady, compressible flow field that is two-dimensional in the xy-plane and in which temperature and density variations are significant, how many unknowns are there? List the equations required to solve for these unknowns. (Note: Assume other flow properties like viscosity, thermal conductivity, etc., can be treated as constants.)
Consider a two-dimensional, compressible flow field in which an initially square fluid particle moves and deforms. The fluid particle dimension is a at time t and is aligned with the x- and y-axes as sketched in Fig.. At some later time, the particle is still aligned with the x- and y-axes but has deformed into a rectangle of horizontal length 1.08a and vertical length 0.903a. (The particle’s dimension in the z-direction does not change since the flow is two-dimensional.) By what percentage has the density of the fluid particle increased or decreased?
In a steady, two-dimensional flow field in the xyplane, the x-component of velocity is u = ax + by + cx2 where a, b, and c are constants with appropriate dimensions. Generate a general expression for velocity component ? such that the flow field is incompressible.
Chapter 9 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Question 1: Consider fully developed two-dimensional Poiseuille flow: flow between two infinite parallel plates separated by distance h, with both the top plate and bottom plate stationary, and a forced pressure gradient dP/dx driving the flow as illustrated in the figure (dP/dx is constant and negative). The flow is steady, incompressible, and two-dimensional in the xy-plane. The velocity components are given by 1 dP u = -(y² - hy); v = 0 2μ αχ h where μ is the fluid's viscosity. Is this flow rotational or irrotational? u(y) a. If it is rotational, calculate the vorticity component in the z-direction. Do fluid particles in this flow rotate clockwise or counterclockwise? b. calculate the linear strain rates in the x- and y-directions, and c. calculate the shear strain rate Exy. d. Combine your results to form the two-dimensional strain rate tensor εij in the xy-plane,arrow_forwardConsider the pipe annulus sketched in fig. Assume that the pressure is constant everywhere (there is no forced pressure gradient driving the flow). However, let the inner cylinder be moving at steady velocity V to the right. The outer cylinder is stationary. (This is a kind of axisymmetric Couette flow.) Generate an expression for the x-component of velocity u as a function of r and the other parameters in the problem.arrow_forwardConsider fully developed Couette flow between two infinite parallel plates separated by distance h, with the top plate moving and the bottom plate stationary, as illustrated in the figure below. The flow is steady, incompressible, and two-dimensional in the XY plane. The velocity field is given by V }i = (u, v) = (v² )i +0j = V (a) Find out the acceleration field of this flow. (b) Is this flow steady? What are the u and v components of velocity? u= V² harrow_forward
- Pravin bhaiarrow_forwardPlease show solutions clearly, thank youarrow_forward(a) In a variety of environmental problems, it is common to find fluid motions that have a cellular character; i.e. the fluid streamlines form closed loops in the form of a cell. An example of a 2D cellular flow is ū = sin(rx) cos(ry)î – cos(rx) sin(ry)j (i) Is this flow incompressible? (Justify you answer.) (ii) Calculate the vorticity. (iii) Where is the magnitude of the vorticity highest, and where does it vanish?arrow_forward
- The velocity field for a line vortex in the r?-plane is given byur = 0 u? = K / rwhere K is the line vortex strength. For the case with K = 1.5 m/s2, plot a contour plot of velocity magnitude (speed). Specifically, draw curves of constant speed V = 0.5, 1.0, 1.5, 2.0, and 2.5 m/s. Be sure to label these speeds on your plot.arrow_forwardFind the equation of motion (Navier Stokes) for a viscous fluid between two rotating concentric cylinders (axle and shaft). The inner cylinder has the radius ro and rotates at angular speed wo. The outer cylinder has the radius R and is stationary. Write down each vector component of the equation in a separate line and use reasonable assumptions to simplify the equation, especially the derivatives. Be sure to use cylindrical coordinates for the convective operator and the other derivatives.arrow_forwardFluid Mechanics Define Flow field ? Define equations not a general definitionarrow_forward
- For each statement, choose whether the statement is true or false, and discuss your answer briefly. (a) The velocity potential function can be defined for threedimensional flows. (b) The vorticity must be zero in order for the stream function to be defined. (c) The vorticity must be zero in order for the velocity potential function to be defined. (d) The stream function can be defined only for two-dimensional flow fields.arrow_forwardQuestion 1: Consider fully developed two-dimensional Poiseuille flow: flow between two infinite parallel plates separated by distance h, with both the top plate and bottom plate stationary, and a forced pressure gradient dP/dx driving the flow as illustrated in the figure (dP/dx is constant and negative). The flow is steady, incompressible, and two-dimensional in the xy-plane. The velocity components are given by 1 dP u(y) u = 2μ dx (y²hy); v = 0 where is the fluid's viscosity. Is this flow rotational or irrotational? a. If it is rotational, calculate the vorticity component in the z-direction. Do fluid particles in this flow rotate clockwise or counterclockwise? b. calculate the linear strain rates in the x- and y-directions, and c. calculate the shear strain rate ɛxy. d. Combine your results to form the two-dimensional strain rate tensor εij in the xy-plane,arrow_forwardA subtle point, often missed by students of fluid mechanics (and even their professors!), is that an inviscid region of flow is not the same as an irrotational (potential) region of flow. Discuss the differences and similarities between these two approximations. Give an example of each.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License