Concept explainers
Consider the steady, two-dimensional, incompressible velocity field,
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
- 1. For a velocity field described by V = 2x2i − zyk, is the flow two- or threedimensional? Incompressible? 2. For an Eulerian flow field described by u = 2xyt, v = y3x/3, w = 0, find the slope of the streamline passing through the point [2, 4] at t = 2. 3. Find the angle the streamline makes with the x-axis at the point [-1, 0.5] for the velocity field described by V = −xyi + 2y2jarrow_forwardA fluid has a velocity field defined by u = x + 2y and v = 4 -y. In the domain where x and y vary from -10 to 10, where is there a stagnation point? Units for u and v are in meters/second, and x and y are in meters. Ox = 2 m. y = 1 m x = 2 m, y = 0 No stagnation point exists x = -8 m, y = 4 m Ox = 1 m, y = -1 m QUESTION 6 A one-dimensional flow through a nozzle has a velocity field of u = 3x + 2. What is the acceleration of a fluid particle through the nozzle? Assume u, x and the acceleration are all in consistent units. O 3 du/dt 9x + 6 1.5 x2 + 2x O Oarrow_forward1. A Cartesian velocity field is defined by V = 2xi + 5yz2j − t3k. Find the divergence of the velocity field. Why is this an important quantity in fluid mechanics? 2. Is the flow field V = xi and ρ = x physically realizable? 3. For the flow field given in Cartesian coordinates by u = y2 , v = 2x, w = yt: (a) Is the flow one-, two-, or three-dimensional? (b) What is the x-component of the acceleration following a fluid particle? (c) What is the angle the streamline makes in the x-y plane at the point y = x = 1?arrow_forward
- The velocity of flow of fluid is represented by the equation: V=2xi +3vj. The equation of the stream line passing through the point (4,3) is (A) 0.72x = 1,2 (B)¹ = 0.72x¹/² (C) 0.72x2=2 (D) None of thesearrow_forwardThe velocity components of a flow field are given by: = 2x² – xy + z², v = x² – 4xy + y², w = 2xy – yz + y² (i) Prove that it is a case of possible steady incompressible fluid flow (ii) Calculate the velocity and acceleration at the point (2,1,3)arrow_forwardA two-dimensional flow field has an x-component of velocity given in Cartesian coordinates by u = 2x − 3y. (a) Find v, the y-component of velocity, if the flow is incompressible and v = 0 when x = 0. (b) If the flow follows the Bernoulli equation, find an expression for the pressure distribution as a function of x and y, given that the pressure is p0 at the stagnation point.arrow_forward
- (b) Two velocity components of a steady, incompressible flow field are given as follows; u = 2ax + bxy + cy? v = axz – byz? where a, b and c are constants. Determine an expression for w as a function of x, y, and z.arrow_forward3.4 Consider a steady, incompressible, 2D velocity field for motion parallel to the X-axis with constant shear. The shear rate is du/dy Ay. Obtain an expression for the velocity field V. Calculate the rate of rotation. Evaluate the stream function %3D for this flow field. Ay Ay + В і, о, Ay + By+ C 6. Ans: V= 2arrow_forwardCourse: Fluid Mechanicsarrow_forward
- In plane stagnation flow, an incompressible fluid occupying the space y>0 has one velocity component given by Vx-x. The flow is two-dimensional and steady, such that V₂=0 and nothing depends on z or time t. (a) Use the continuity equation to determine Vy(x,y), given that Vy(x,0) =0. (This condition for Vy corresponds to the plane y=0 being an impenetrable boundary.) (b) is arbitrary, so you may set Y=0 at any convenient location.) Determine the stream function for this flow, (x,y). (The absolute value ofarrow_forwardUrgent pleasearrow_forward2. Consider the two-dimensional time-dependent velocity field u(x, t) = (sint, cost, 0), in the basis of Cartesian coordinates. a) Determine the streamlines passing through the point x = 0 at the times t = 0, π/2, π and 3π/2. b) Determine the paths of fluid particles passing through the point x = 0 at the same times, to = 0, π/2, 7 and 37/2. Hence, describe their motion. ㅠ c) Find the streakline produced by tracer particles continuously released at the point xo = 0 and find its position at t = 0, π/2, π and 37/2. Hence describe its motion.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY