FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 131P
In thud flow analyses, which boundary condition can be expressed as
(a) No-slip
(b) Interface
(c) Free-surface
() Symmetry
(e) Inlet
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In fluid flow analyses, which boundary condition can be expressed as V-›fluid =V-›wall?
(a) No-slip (b) Interface (c) Free-surface (d ) Symmetry (e) Inlet
Mott ."
cometer, which we can analyze later in Chap. 7. A small
ball of diameter D and density p, falls through a tube of test
liquid (p. µ). The fall velocity V is calculated by the time to
fall a measured distance. The formula for calculating the
viscosity of the fluid is
discusses a simple falling-ball vis-
(Po – p)gD²
18 V
This result is limited by the requirement that the Reynolds
number (pVD/u) be less than 1.0. Suppose a steel ball (SG =
7.87) of diameter 2.2 mm falls in SAE 25W oil (SG = 0.88)
at 20°C. The measured fall velocity is 8.4 cm/s. (a) What is
the viscosity of the oil, in kg/m-s? (b) Is the Reynolds num-
ber small enough for a valid estimate?
A hemispherical gasoline droplet is formed on the fuel pump nozzle outlet. Estimate the maximum diameter before it falls off. Assuming following properties: p = 750 g/L.
Chapter 9 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- please answer quicklyarrow_forward(b) In two dimensional boundary layer, shear stress was changed linearly from the solid surface toward y-axis until it reach the value of zero at y = ở. Based on Table 2 and setting given to you; (i) Derive the equation of displacement thickness and momentum thickness using Von Karman Approximation Method ; and (ii) Determine the accuracy of this method in determining the value of displacement thickness and momentum thickness. C5 Table 2: Equation of Velocity Profile Setting Equation wU = 2y/8 - (y/S² 1arrow_forwardOne of the conditions in using the Bernoulli equation is the requirement of inviscid flow. However there is no fluid with zero viscosity in the world except some peculiar fluid at very low temperature. Bernoulli equation or inviscid flow theory is still a very important branch of fluid dynamics for the following reasons: (i) (ii) There is wide region of flow where the velocity gradient is zero and so the viscous effect does not manifest itself, such as in external flow past an un- stalled aerofoil. The conservation of useful energy allows the conversion of kinetic and potential energy to pressure and hence pressure force acting normal to the control volume or system boundary even though the tangential friction stress is absent. It allows the estimation of losses in internal pipe flow. (A) (i) and (ii) (B) (i) and (iii) (ii) and (iii) All of the above (C) (D)arrow_forward
- Fluid mechanics Iarrow_forwardfluid mechanics subarrow_forward1. The Stokes-Oseen formula for drag force Fon a sphere of diameter D in a fluid stream of low velocity V, density p, and viscosity u is: 9T F = 3TuDV + 16PD? Is this formula dimensionally homogenous? 2. The efficiency n of a pump is defined as the (dimensionless) ratio of the power required to drive a pump: QAp input power Where Q is the volume rate of flow and Ap is the pressure rise produced by the pump. Suppose that a certain pump develops a pressure of Ibf/in? (1ft = 12 in) when its flow rate is 40 L/s (1L =0.001 m). If the input power is 16hp (1hp = 760 W), what is the efficiency?arrow_forward
- fluid mechanics 1arrow_forwardThe drag of a sonar transducer is to be predicted, based on wind (Air) tunnel test data. The prototype is 1.5 m diameter sphere, is to be towed at 4.3 m/s in seawater. The model is 0.2 m diameter. Take: Air density = 1.2 kg/m, Air dynamic viscosity = 1.81 x 10$ Pa. s, seawater density = 1000 kg/m, seawater dynamic viscosity 1.813x 10 Pa s, If the drag of the model at these test conditions is 9.5 N, estimate the drag of the prototype in (N).arrow_forward(b) For each flow description: (i) Steady, compressible flow of air. (ii) Arbitrary flow (Lagrangian perspective). (iii) Unsteady, incompressible flow of viscous oil. (iv) Arbitrary flow (Eulerian perspective). choose from the list below the form of mass conservation you would use for that situation and explain your choice: 1. V · ū = 0 Dp 2. = -pV · ū Dt др 3. + V· (pū) = 0 4. V · (pū) = 0arrow_forward
- -5 2 Air stream k = 0.02439 W/m.K, v 1.426 x10 m /s, Pr = 0.7336) flows over a flat surface [L= 4.5 m, w = 2.5 m] with velocity of 97 km/hr, flow is parallel to L, What is the amount of heat transfer "kW" when the temperature difference is 84 °C?arrow_forwardI want to answer all the questions by handwriting.arrow_forwardWhich one is not a fundamental type of motion or deformation an element may undergo in fluid mechanics? (a) Rotation (b) Converging (c) Translation (d ) Linear strain (e) Shear strainarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license