FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 104P
To determine
The mathematical equation for each boundary condition.
The pressure boundary condition is appropriate for this flow field.
The velocity boundary conditions in terms of cylindrical coordinates and velocity component at free surface.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider liquid in a cylindrical tank. Both the tank and the liquid rotate as a rigid
body. The free surface of the liquid is exposed to room air. Surface tension effects
are negligible. Present the boundary conditions required to solve this problem.
Specifically, what are the velocity boundary conditions in terms of cylindrical
coordinates (r, 0, z) and velocity components (ur, uo, U:) at all surfaces, including the
tank walls and the free surface? What pressure boundary conditions are appropriate
for this flow field? Explain.
Free
surface
Ps Paa
Liquid
Please help me to answer number (a) with detailed explanation by today. thank you
2.0 m
7:
10.0 m
= 2²-²²
Us
B
10.0 m
Figure Q1-2
Question 2
Air flow at a constant speed (Us = 10 m/s) is forming a two-dimensional incompressible
laminar boundary layer along a flat plate The velocity profile inside the boundary layer is
given by:
2.0 m
(Equation 1)
At x = 1.00 m, the boundary layer thickness is given as 6.6094 mm. At this location:
a) Determine the shear stress at the wall, at y = 3 mm and y = 10 mm.
b) Calculate the boundary layer displacement thickness.
c) Calculate the mass flow rate through the boundary layer per unit width.
d) Calculate the mass flow rate per unit width of an ideal flow going through the same
height as the boundary layer thickness.
e) Through calculation relate the difference between the mass flow rates in parts (c)
and (d) to the local boundary layer displacement thickness. In not more than 60
word justify your answer. Use sketch(s) to illustrate your justification.
f) Does the assumed velocity profile satisfy the pressure boundary condition? In…
Chapter 9 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An incompressible Newtonian liquid is confined between two concentric circular cylinders of infinite length— a solid inner cylinder of radius Ri and a hollow, stationary outer cylinder of radius Ro. The inner cylinder rotates at angular velocity ?i. The flow is steady, laminar, and two-dimensional in the r?-plane. The flow is also rotationally symmetric, meaning that nothing is a function of coordinate ? (u? and P are functions of radius r only). The flow is also circular, meaning that velocity component ur = 0 everywhere. Generate an exact expression for velocity component u? as a function of radius r and the other parameters in the problem. You may ignore gravity.arrow_forwardA cube of side (a) and mass (M) is initially sitting fully submerged at the bottom of a container filled with a liquid of kinematic viscosity v and density p. The container has a square cross-section of side (a+a/5) and the cube is sitting right at the middle of the container base. (a) A force (F) starts pulling the cube up at a constant velocity (U). Develop an expression for the force in terms of (U, M. a. g, p and v). You may assume that the velocity in the gap between the cube's sides and the container walls is linear. The expression for (F) is to be valid as long as the cube remains submerged. (b) After the cube reaches the water surface, it continues to be pulled up by the same force. Develop a differential equation for the variation with time of the fraction of the cube that is submerged in water.arrow_forwardA stirrer mixes liquid chemicals in a large tank. The free surface of the liquid is exposed to room air. Surface tension effects are negligible. Discuss the boundary conditions required to solve this problem. Specifically, what are the velocity boundary conditions in terms of cylindrical coordinates (r, ?, z) and velocity components (ur, u?, uz) at all surfaces, including the blades and the free surface? What pressure boundary conditions are appropriate for this flow field? Write mathematical equations for each boundary condition and discuss.arrow_forward
- Please help me to answer question (B) by today with explanation. thank youarrow_forward(b) In two dimensional boundary layer, shear stress was changed linearly from the solid surface toward y-axis until it reach the value of zero at y = ở. Based on Table 2 and setting given to you; (i) Derive the equation of displacement thickness and momentum thickness using Von Karman Approximation Method ; and (ii) Determine the accuracy of this method in determining the value of displacement thickness and momentum thickness. C5 Table 2: Equation of Velocity Profile Setting Equation wU = 2y/8 - (y/S² 1arrow_forward(b) In two dimensional boundary layer, shear stress was changed linearly from the solid surface toward y-axis until it reach the value of zero at y = 6. Based on Table 2 and setting given to you; () Derive the equation of displacement thickness and momentum thickness using Von Karman Approximation Method ; and (ii) Determine the accuracy of this method in determining the value of displacement thickness and momentum thickness. Table 2 : Equation of Velocity Profile Setting Equation wU = 3(y/8)/2 – (y/8j?/2arrow_forward
- Two immiscible Newtonian liquids, A and B, are in steady laminar flow between two parallelplates. Which, if any, of the velocity profiles shown below are impossible? Explain your answerscarefully.shear stress is visocsity time dux/dyarrow_forwardCOE0051 FLUID MECHANICS 2 PROPERTIES OF FLUIDS Section Break (Continuous)- 1. A 30x60 cm plate is pulled through the oil with viscosity of 0.05 kg/m-s. The distance between the parallel plates are 1.5 cm. If the plate is need to pull at the rate of 0.4 m/s, what is the force needed to attain this velocity? FIXED PLATE лиши 1.5 cm FIXED PLATE October 20, 2022 .5 cm 1.0 cm .4 m/sarrow_forwardWhat role does computational fluid dynamics (CFD) play in optimizing the design and performance of aerodynamic systems, such as aircraft and wind turbines, and how has the advancement of CFD software and hardware influenced engineering practices in these domains?arrow_forward
- Asaparrow_forwardA cylindrical tank shown below has a radius ? and a circular orifice at the bottom of radius ?. At time ? = 0 the liquid level in the tank is ho. (a) Use the Bernoulli equation to determine the relations between the orifice velocity ?o and the free surface velocity ?s (assume the surface velocity is not zero). (b) Use conservation of mass to determine the orifice velocity in terms of the free surface velocity. (c) Use the results in (a) and (b) to derive a differential equation for h(?). Note that ?s = − dh/dt. d) Separate variables and solve the equation for h(?) with the initial condition h(0) = ho (e) Determine how long it will take to empty the tank.arrow_forwardplllllzzzz help me right nowww plzzzz Incompressible air (density=1.2 kg/m3) flows around the car, if the pressure coefficient at point A is Cp= -4.9 and the reference dynamic pressure is 20 kpa, then what is the velocity of air at point A?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Physics 33 - Fluid Statics (1 of 10) Pressure in a Fluid; Author: Michel van Biezen;https://www.youtube.com/watch?v=mzjlAla3H1Q;License: Standard YouTube License, CC-BY