Concept explainers
Consider the following steady, three-dimensional velocity field in Cartesian coodinates:
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
- 1. A Cartesian velocity field is defined by V = 2xi + 5yz2j − t3k. Find the divergence of the velocity field. Why is this an important quantity in fluid mechanics? 2. Is the flow field V = xi and ρ = x physically realizable? 3. For the flow field given in Cartesian coordinates by u = y2 , v = 2x, w = yt: (a) Is the flow one-, two-, or three-dimensional? (b) What is the x-component of the acceleration following a fluid particle? (c) What is the angle the streamline makes in the x-y plane at the point y = x = 1?arrow_forwarda. Given the velocity field u=(u,v,w) in Cartesian coordinates with u=2x+y, v=2zt, w=0. i. Find the equations of the corresponding streamlines (Eulerian concept) ii. Find the equations of the corresponding particle paths, i.e., the pathlines (Lagrangian concept). b. Show that the Vu=0 everywhere implies that volumes are conserved, i.e., the volume of red particles at t-0 is the same as at t=t. Hint: Write out what you must prove and use the theorems to get there.arrow_forward1. For a velocity field described by V = 2x2i − zyk, is the flow two- or threedimensional? Incompressible? 2. For an Eulerian flow field described by u = 2xyt, v = y3x/3, w = 0, find the slope of the streamline passing through the point [2, 4] at t = 2. 3. Find the angle the streamline makes with the x-axis at the point [-1, 0.5] for the velocity field described by V = −xyi + 2y2jarrow_forward
- 4. Consider a velocity field V = K(yi + ak) where K is a constant. The vorticity, z , is (A) -K (B) K (C) -K/2 (D) K/2arrow_forward1. Stagnation Points A steady incompressible three dimensional velocity field is given by: V = (2 – 3x + x²) î + (y² – 8y + 5)j + (5z² + 20z + 32)k Where the x-, y- and z- coordinates are in [m] and the magnitude of velocity is in [m/s]. a) Determine coordinates of possible stagnation points in the flow. b) Specify a region in the velocity flied containing at least one stagnation point. c) Find the magnitude and direction of the local velocity field at 4- different points that located at equal- distance from your specified stagnation point.arrow_forwardAn Eulerian velocity vector field is described by V = 3xzj + yk, where i, j and k are unit vectors in the x-, y- and z-directions, respectively. (a) Is the flow one-, two- or three-dimensional? (b) Is the flow compressible or incompressible? (c) What is the acceleration following a fluid particle? (d) If gravity and viscous forces can be neglected, what is the pressure gradient?arrow_forward
- An Eulerian velocity vector field is described by V = 2x2yi − 2xy2j − 4xyk, where i, j and k are unit vectors in the x-, y- and z-directions, respectively. (a) Is the flow one-, two- or three-dimensional? (b) Is the flow compressible or incompressible? (c) What is the x-component of the acceleration following a fluid particle? (d) Bonus question: Is the flow irrotational?arrow_forwardPlease answer botharrow_forwardA incompressible, steady, velocity field is given by the following components in the x-y plane: u = 0.205 + 0.97x + 0.851y ; v = v0 + 0.5953x - 0.97y How would I calculated the acceleration field (ax and ay), and the acceleration at the point, v0= -1.050 ? Any help would be greatly appreciated :)arrow_forward
- (d) Consider the following steady, three dimensional velocity field in Cartesian coordinates. V = (axy² – b)i – (2cy)³j +(dxy)k where a, b, c and d are constants. Under what conditions is this flow field incompressible?arrow_forwardA velocity field is given by u = 5y2, v = 3x, w = 0. (a) Is this flow steady or unsteady? Is it two- or three- dimensional? (b) At (x,y,z) = (3,2,–3), compute the velocity vector. (c) At (x,y,z) = (3,2,–3), compute the local (i.e., unsteady part) of the acceleration vector. (d ) At (x,y,z) = (3,2,–3), compute the convective (or advective) part of the acceleration vector. (e) At (x,y,z) = (3,2,–3), compute the (total) acceleration vector.arrow_forwardFor an Eulerian flow field described by u = 2xyt, v = y3x/3, w = 0: (a) Is this flow one-, two-, or three-dimensional? (b) Is this flow steady? (c) Is this flow incompressible? (d) Find the x-component of the acceleration vector.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY