FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 54P
Flow separates at a shap corner along a wall and froms a recirculating and a recirculating separtion bubble as sketched in Fig. 9-54 (streamlines are shown). The value of the stream function at the wall is zero, and that of the uppermost streamline is positive value
FIGURE P9-54
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
V
u-v
Question 4: Consider fully developed Couette flow - flow between
two infinite parallel plates separated by distance h, with the top
plate moving and the bottom plate stationary as illustrated. The flow
is steady, incompressible, and two dimensional in the xy-plane. The
velocity field is given by V = (u,v) = (V y/h)ỉ + 0ỷ, Generate an
expression for stream function Yalong the vertical dashed line in
the figure. For convenience, 4= 0 along the bottom wall of the channel. What is the value of Y
along the top wall?
For an incompressible flow on xz-plane, write down the continuity equation. Define an appropriate
is streamlines.
stream function and show that the lines of constant
The actual path traveled by an individual fluid particle over some period is called a (a) Pathline (b) Streamtube (c) Streamline (d ) Streakline (e) Timeline
Chapter 9 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 9 - Explain the fundamental differences between a flow...Ch. 9 - What does it mean when we say that two more...Ch. 9 - The divergence theorem is v.cdv=A c . n dACh. 9 - Prob. 4CPCh. 9 - Prob. 5CPCh. 9 - Prob. 6CPCh. 9 - Prob. 7PCh. 9 - Prob. 8PCh. 9 - Let vector G=2xzi12x2jz2kk . Calculate the...Ch. 9 - Prob. 10P
Ch. 9 - Prob. 11PCh. 9 - Prob. 12PCh. 9 - Prob. 13PCh. 9 - Alex is measuring the time-averaged velocity...Ch. 9 - Let vector c be given G=4xziy2i+yzkand let V be...Ch. 9 - The product rule can be applied to the divergence...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Prob. 20CPCh. 9 - In this chapter we derive the continuity equation...Ch. 9 - Repeat Example 9-1(gas compressed in a cylinder by...Ch. 9 - Consider the steady, two-dimensional velocity...Ch. 9 - The compressible from of the continuity equation...Ch. 9 - In Example 9-6 we derive the equation for...Ch. 9 - Consider a spiraling line vortex/sink flow in the...Ch. 9 - Verify that the steady; two-dimensional,...Ch. 9 - Consider steady flow of water through an...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Consider the following steady, three-dimensional...Ch. 9 - Two velocity components of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - Imagine a steady, two-dimensional, incompressible...Ch. 9 - The u velocity component of a steady,...Ch. 9 - What is significant about curves of constant...Ch. 9 - In CFD lingo, the stream function is often called...Ch. 9 - Prob. 39CPCh. 9 - Prob. 40CPCh. 9 - Prob. 41PCh. 9 - Prob. 42PCh. 9 - Prob. 44PCh. 9 - Prob. 45PCh. 9 - As a follow-up to Prob. 9-45, calculate the volume...Ch. 9 - Consider the Couette flow of Fig.9-45. For the...Ch. 9 - Prob. 48PCh. 9 - AS a follow-up to Prob. 9-48, calculate the volume...Ch. 9 - Consider the channel flow of Fig. 9-45. The fluid...Ch. 9 - In the field of air pollution control, one often...Ch. 9 - Suppose the suction applied to the sampling...Ch. 9 - Prob. 53PCh. 9 - Flow separates at a shap corner along a wall and...Ch. 9 - Prob. 55PCh. 9 - Prob. 56PCh. 9 - Prob. 58PCh. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Prob. 61PCh. 9 - Prob. 62PCh. 9 - Prob. 63EPCh. 9 - Prob. 64PCh. 9 - Prob. 65EPCh. 9 - Prob. 66PCh. 9 - Prob. 68EPCh. 9 - Prob. 69PCh. 9 - Prob. 71PCh. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Wht in the main distionction between Newtormine...Ch. 9 - Prob. 77CPCh. 9 - What are constitutive equations, and to the fluid...Ch. 9 - An airplane flies at constant velocity Vairplane...Ch. 9 - Define or describe each type of fluid: (a)...Ch. 9 - The general cool volume from of linearmomentum...Ch. 9 - Consider the steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider the following steady, two-dimensional,...Ch. 9 - Consider liquid in a cylindrical tank. Both the...Ch. 9 - Engine oil at T=60C is forced to flow between two...Ch. 9 - Consider steady, two-dimensional, incompressible...Ch. 9 - Consider steady, incompressible, parallel, laminar...Ch. 9 - Prob. 89PCh. 9 - Prob. 90PCh. 9 - Prob. 91PCh. 9 - The first viscous terms in -comonent of the...Ch. 9 - An incompressible Newtonian liquid is confined...Ch. 9 - Prob. 94PCh. 9 - Prob. 95PCh. 9 - Prob. 96PCh. 9 - Prob. 97PCh. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Consider again the pipe annulus sketched in Fig...Ch. 9 - Repeat Prob. 9-99 except swap the stationary and...Ch. 9 - Consider a modified form of Couette flow in which...Ch. 9 - Consider dimensionless velocity distribution in...Ch. 9 - Consider steady, incompressible, laminar flow of a...Ch. 9 - Prob. 104PCh. 9 - Prob. 105PCh. 9 - Prob. 106PCh. 9 - Prob. 107CPCh. 9 - Prob. 108CPCh. 9 - Discuss the relationship between volumetric strain...Ch. 9 - Prob. 110CPCh. 9 - Prob. 111CPCh. 9 - Prob. 112PCh. 9 - Prob. 113PCh. 9 - Look up the definition of Poisson’s equation in...Ch. 9 - Prob. 115PCh. 9 - Prob. 116PCh. 9 - Prob. 117PCh. 9 - For each of the listed equation, write down the...Ch. 9 - Prob. 119PCh. 9 - Prob. 120PCh. 9 - A block slides down along, straight inclined wall...Ch. 9 - Water flows down a long, straight, inclined pipe...Ch. 9 - Prob. 124PCh. 9 - Prob. 125PCh. 9 - Prob. 126PCh. 9 - Prob. 128PCh. 9 - The Navier-Stokes equation is also known as (a)...Ch. 9 - Which choice is not correct regarding the...Ch. 9 - In thud flow analyses, which boundary condition...Ch. 9 - Which choice is the genera1 differential equation...Ch. 9 - Which choice is the differential , incompressible,...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady, two-dimensional, incompressible flow...Ch. 9 - A steady velocity field is given by...Ch. 9 - Prob. 137P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- An incompressible Newtonian liquid is confined between two concentric circular cylinders of infinite length— a solid inner cylinder of radius Ri and a hollow, stationary outer cylinder of radius Ro. The inner cylinder rotates at angular velocity ?i. The flow is steady, laminar, and two-dimensional in the r?-plane. The flow is also rotationally symmetric, meaning that nothing is a function of coordinate ? (u? and P are functions of radius r only). The flow is also circular, meaning that velocity component ur = 0 everywhere. Generate an exact expression for velocity component u? as a function of radius r and the other parameters in the problem. You may ignore gravity.arrow_forwardWhat is the importance of expressing equations describing fluid dynamics in terms of non-dimensional parameters?Give two examples a of non-dimensional parameters used in fluid mechanics explaining their significance.arrow_forwardi need the answer quicklyarrow_forward
- For each statement, choose whether the statement is true or false, and discuss your answer briefly. (a) The velocity potential function can be defined for threedimensional flows. (b) The vorticity must be zero in order for the stream function to be defined. (c) The vorticity must be zero in order for the velocity potential function to be defined. (d) The stream function can be defined only for two-dimensional flow fields.arrow_forwardThis question is related to Fluid Mechanics.arrow_forwardThe locus of fluid particles that have passed sequentially through a prescribed point in the flow is called a (a) Pathline (b) Streamtube (c) Streamline (d ) Streakline (e) Timelinearrow_forward
- A steady, incompressible, two-dimensional CFD calculation of flow through an asymmetric two-dimensional branching duct reveals the streamline pattern sketched in Fig, where the values of ? are in units of m2/s, and W is the width of the duct into the page. The values of stream function ? on the duct walls are shown. What percentage of the flow goes through the upper branch of the duct?arrow_forwardWhat does the word kinematics mean? Explain what the study of fluid kinematics involves.arrow_forwardA flow field is described in Cartesian coordinates by Is it incompressible?arrow_forward
- 9-94: Repeat Prob. 9–93, but let the inner cylinder be stationary and the outer cylinder rotate at angular velocity ?o. Generate an exact solution for u?(r) using the step-by-step procedure discussed in this chapter. I have done 9-93 and know it is on here already but here is the problem statement for it: 9-93: An incompressible Newtonian liquid is confined between two concentric circularcylinders of infinite length— a solid inner cylinder of radius Ri and a hollow, stationaryouter cylinder of radius Ro (Fig. P9–93; the z-axis is out ofthe page). The inner cylinder rotates at angular velocity ?i .The flow is steady, laminar, and two-dimensional in ther? -plane. The flow is also rotationally symmetric, meaningthat nothing is a function of coordinate ? (u? and P arefunctions of radius r only). The flow is also circular,meaning that velocity component ur = 0 everywhere.Generate an exact expression for velocity component u? asa function of radius r and the other parameters in theproblem.…arrow_forwardConsider steady, two-dimensional, incompressible flow in the xz-plane rather than in the xy-plane. Curves of constant stream function are shown in Fig. The nonzero velocity components are (u, w). Define a stream function such that flow is from right to left in the xz-plane when ? increases in the z-direction.arrow_forwardConsider a steady, two-dimensional flow field in the xy-plane whose x-component of velocity is given by u = a + b(x − c)2 where a, b, and c are constants with appropriate dimensions. Of what form does the y-component of velocity need to be in order for the flow field to be incompressible? In other words, generate an expression for ? as a function of x, y, and the constants of the given equation such that the flow is incompressiblearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license