Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 105P
A small sphere with D = 6 mm is observed to fall through castor oil at a terminal speed of 60 mm/s. The temperature is 20°C. Compute the drag coefficient for the sphere. Determine the density of the sphere. If dropped in water, would the sphere fall slower or faster? Why?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
a smooth flat plate of length 5 m and width 2 m is moving with a velocity of 4 m/s in stationary air of density as 1.25 kg/m³ and kinematic viscosity 1.5 x 10-5 m²/s. determine thickness of the boundary layer at the trailing edge of the smooth plate. find the total drag on one side of the plate assuming that the boundary layer is turbulent from the very beginning.
A rotary mixer is constructed from two circular disks as shown. The mixer is rotated at 60 rpm in a large vessel containing a brine solution (SG = 1.1, μbrine=1.07×10-3 Pa-s). Determine the appropriate coefficient of drag using Low Reynolds Drag Coefficient. Neglect the drag on the rods and the motion induced in the liquid. Estimate the minimum torque and power required to drive the mixer.
only HANDWRITTEN answer needed ( NOT TYPED)
plate 450 mm x 150 mm has been placed longitudinally in a stream of crude oil (specific gravity 0.925 and kinematic viscosity of 9.0 x 10-5 m2/s) which flows with velocity of 6 m/s. Calculate: (i) the friction drag on the plate; (ii) the thickness of the boundary layer at a distance 215 mm from the trailing edge;(iii) the thickness of the boundary layer at the trailing edge; (iv) shear stress at the trailing edge.
Chapter 9 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 9 - The roof of a minivan is approximated as a...Ch. 9 - A model of a river towboat is to be tested at 1:18...Ch. 9 - For flow over a smooth plate, what approximately...Ch. 9 - A model of a thin streamlined body is placed in a...Ch. 9 - A student is to design an experiment involving...Ch. 9 - A 1 m 2 m sheet of plywood is attached to the...Ch. 9 - The extent of the laminar boundary layer on the...Ch. 9 - Velocity profiles in laminar boundary layers often...Ch. 9 - An approximation for the velocity profile in a...Ch. 9 - Evaluate / for each of the laminar boundary-layer...
Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A fluid, with density = 1.5 slug/ft3, flows at U...Ch. 9 - Solve Problem 9.13 with the velocity profile at...Ch. 9 - Air flows in a horizontal cylindrical duct of...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A laboratory wind tunnel has a test section 25 cm...Ch. 9 - Air flows in the entrance region of a square duct,...Ch. 9 - A flow of 68F air develops in a flat horizontal...Ch. 9 - A flow of air develops in a horizontal cylindrical...Ch. 9 - Using numerical results for the Blasius exact...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - A smooth flat plate 2.4 m long and 0.6 m wide is...Ch. 9 - Consider flow of air over a flat plate. On one...Ch. 9 - A thin flat plate, L = 9 in. long and b = 3 ft...Ch. 9 - For a laminar boundary layer on a flat plate,...Ch. 9 - Air at atmospheric pressure and 20C flows over...Ch. 9 - A thin flat plate is installed in a water tunnel...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Prob. 34PCh. 9 - Water at 10C flows over a flat plate at a speed of...Ch. 9 - Use the momentum integral equation to derive...Ch. 9 - A smooth flat plate 1.6 ft long is immersed in 68F...Ch. 9 - Prob. 38PCh. 9 - A developing boundary layer of standard air on a...Ch. 9 - Assume the flow conditions given in Example 9.3....Ch. 9 - A flat-bottomed barge having a 150 ft 20 ft...Ch. 9 - European InterCity Express trains operate at...Ch. 9 - Grumman Corp. has proposed to build a magnetic...Ch. 9 - Repeat Problem 9.32, for an air flow at 80 ft/s,...Ch. 9 - The velocity profile in a turbulent boundary-layer...Ch. 9 - The U.S. Navy has built the Sea Shadow, which is a...Ch. 9 - The two rectangular smooth flat plates are to have...Ch. 9 - Standard air flows over a horizontal smooth flat...Ch. 9 - Air at standard conditions flows over a flat...Ch. 9 - A uniform flow of standard air at 60 m/s enters a...Ch. 9 - A laboratory wind tunnel has a flexible upper wall...Ch. 9 - Air flows in a cylindrical duct of diameter D = 6...Ch. 9 - Perform a cost-effectiveness analysis on a typical...Ch. 9 - Table 9.1 (on the web) shows the numerical results...Ch. 9 - A fluid flow enters the plane-wall diffuser that...Ch. 9 - For flow over a flat plate with zero pressure...Ch. 9 - A flat-bottomed barge, 80 ft long and 35 ft wide,...Ch. 9 - A towboat for river barges is tested in a towing...Ch. 9 - Plot the local friction coefficient cf, the...Ch. 9 - A smooth plate 3 m long and 0.9 m wide moves...Ch. 9 - Resistance of a barge is to be determined from...Ch. 9 - A nuclear submarine cruises fully submerged at 27...Ch. 9 - You are asked by your college crew to estimate the...Ch. 9 - The drag coefficient of a circular disk when...Ch. 9 - A steel sphere of 0.25 in. diameter has a velocity...Ch. 9 - A steel sphere (SG = 7.8) of 13 mm diameter falls...Ch. 9 - A sheet of plastic material 0.5 in. thick, with...Ch. 9 - As part of the 1976 bicentennial celebration, an...Ch. 9 - What constant speed will be attained by a lead (SG...Ch. 9 - Assuming a critical Reynolds number of 0.1,...Ch. 9 - Glass spheres of 0.1 in. diameter fall at constant...Ch. 9 - A rotary mixer is constructed from two circular...Ch. 9 - Calculate the drag of a smooth sphere of 0.3 m...Ch. 9 - Calculate the drag of a smooth sphere of 0.5 m...Ch. 9 - A cylindrical chimney 0.9 m in diameter and 22.5 m...Ch. 9 - The resistance to motion of a good bicycle on...Ch. 9 - Ballistic data obtained on a firing range show...Ch. 9 - A standard marine torpedo is 0.533 m in diameter...Ch. 9 - A large truck has an essentially boxlike body that...Ch. 9 - At a surprise party for a friend youve tied a...Ch. 9 - A 0.5-m-diameter hollow plastic sphere containing...Ch. 9 - A simple but effective anemometer to measure wind...Ch. 9 - The Willis Tower (formerly the Sears Tower) in...Ch. 9 - It is proposed to build a pyramidal building with...Ch. 9 - Calculate the drag forces on a 1/200 scale model...Ch. 9 - A circular disk is hung in an air stream from a...Ch. 9 - A vehicle is built to try for the land-speed...Ch. 9 - An F-4 aircraft is slowed after landing by dual...Ch. 9 - A tractor-trailer rig has frontal area A = 102 ft2...Ch. 9 - A 180hp sports car of frontal area 1.72 m2, with a...Ch. 9 - An object falls in air down a long vertical chute....Ch. 9 - Prob. 99PCh. 9 - A light plane tows an advertising banner over a...Ch. 9 - The antenna on a car is 10 mm in diameter and 1.8...Ch. 9 - Consider small oil droplets (SG = 0.85) rising in...Ch. 9 - Standard air is drawn into a low-speed wind...Ch. 9 - A small sphere with D = 6 mm is observed to fall...Ch. 9 - A tennis ball with a mass of 57 g and diameter of...Ch. 9 - A water tower consists of a 12-m-diameter sphere...Ch. 9 - A cast-iron 12-pounder cannonball rolls off the...Ch. 9 - A rectangular airfoil of 40 ft span and 6 ft chord...Ch. 9 - A rectangular airfoil of 9 m span and 1.8 m chord...Ch. 9 - Why is it possible to kick a football farther in a...Ch. 9 - If CL = 1.0 and CD = 0.05 for an airfoil, then...Ch. 9 - A wing model of 5 in. chord and 2.5 ft span is...Ch. 9 - A barge weighing 8820 kN that is 10 m wide, 30 m...Ch. 9 - A spherical sonar transducer with 15 in. diameter...Ch. 9 - While walking across campus one windy day, an...Ch. 9 - If the mean velocity adjacent to the top of a wing...Ch. 9 - The NACA 23015 airfoil is to move at 180 mph...Ch. 9 - A human-powered aircraft has a gross weight of 240...Ch. 9 - WiffleTM balls made from light plastic with...Ch. 9 - A model airfoil of chord 6 in. and span 30 in. is...Ch. 9 - An antique airplane carries 50 m of external guy...Ch. 9 - How do cab-mounted wind deflectors for...Ch. 9 - An airplane with an effective lift area of 25 m2...Ch. 9 - The U.S. Air Force F-16 fighter aircraft has wing...Ch. 9 - A light airplane, with mass M = 1000 kg, has a...Ch. 9 - A light airplane has 35-ft effective wingspan and...Ch. 9 - Assume the Boeing 727 aircraft has wings with NACA...Ch. 9 - Jim Halls Chaparral 2F sports-racing cars in the...Ch. 9 - Some cars come with a spoiler, a wing section...Ch. 9 - Roadside signs tend to oscillate in a twisting...Ch. 9 - Air moving over an automobile is accelerated to...Ch. 9 - A class demonstration showed that lift is present...Ch. 9 - Rotating cylinders were proposed as a means of...Ch. 9 - A baseball pitcher throws a ball at 80 mph. Home...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
What is the difference between the size and the capacity of a vector?
Problem Solving with C++ (10th Edition)
2-1 List the five types of measurements that form the
basis of traditional ptane surveying-
Elementary Surveying: An Introduction To Geomatics (15th Edition)
Write an evaluation of some programming language you know, using the criteria described in this chapter.
Concepts Of Programming Languages
Comprehension Check 8-3
The mass of the human brain is 1360 grams [g]. State the weight of the human brain in u...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
What are the two primary functions of a combination center drill?
Degarmo's Materials And Processes In Manufacturing
Average Rainfall Write a program that uses nested loops to collect data and calculate the average rainfall over...
Starting Out with C++ from Control Structures to Objects (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Two large fixed parallel planes are 12 mm apart. The space between the surfaces Example is filled with oil of viscosity 0.972 N.s/m². A flat thin plate 0.25 m² area moves through the oil at a velocity of 0.3 m/s. Calculate the drag force: (1) When the plate is equidistant from both the planes, and (ii) When the thin plate is at a distance of 4 mm from one of the plane surfaces. Fixed parallel plane 6 mm Plate 0.3 m/s F 6 mm 12 mmarrow_forwardTwo large fixed parallel planes are 12 mm apart. The space between the surfaces is filled with oil of viscosity (0.972 Pa.s). A flat thin plate 0.25 m² area moves through the oil at a velocity of 0.3 m/s. Calculate the drag force: (i) When the plate is equidistant from both the planes, and (ii) When the thin plate is at a distance of 4 mm from one of the plane surfaces. 12 mm Plate Fixed parallel plane 6 mm 6 mm 0.3 m/s 12 mm 8 mm 4 mm 0.3 m/s Farrow_forwardA flagpole 16 m high has the shape of a cylinder 100 mm in diameter. The air temperature is 30°C and the atmospheric pressure is 101 KPaa. With what speed is the air blowing against the pole if the moment developed at the base is 2.7 KN.m? The drag coefficient is 1.3.arrow_forward
- Please include the diagram/plotarrow_forwardHelp me pleasearrow_forwardNote: Don't copy from other websites solution, those are wrong solutions. The trailer travels at U = 39 mi/h. The air is still and has a temperature of 60°F. Assume the surfaces are smooth and flat Consider both laminar and turbulent boundary layers. (Figure 1) Part A :Determine the drag acting on each side of the trailer truck.arrow_forward
- B9arrow_forwardThe car shown in the figure below moves at a constant speed on a highway and has a drag coefficient Cpc of 0.32 with the windows and roof closed. What is the percent increase of horsepower needed to maintain the speed if the windows and roof are then opened? With the windows and roof open, the drag coefficient increases to Cpo = 0.43. Assume the frontal area remains the same. Windows and roof closed: CD=CDc Windows open; roof open: C₂=CDoarrow_forwardA square flat plate with sides of length L 2m and a negligible thickness (out of the page) is held stationary in a stream of air that is moving steadily at standard conditions past the plate with a speed U = 10 m/s that is uniform except for the boundary layers. Assume the plate is oriented so that only friction drag is important. Determine the drag coefficient for this plate. Answer: CD, ≈ 0.003 = U L-arrow_forward
- Fastarrow_forwardAir flows at 10 m/s past a smooth rectangular flat plate 0.3m wide and 3m long. Assuming that the turbulence level in the oncoming stream is low and that transition occurs at Re- 5*105, calculate the ratio of total drag when the flow is parallel to the length of the plate to the value when the flow is parallel to the width take density 1.24 kg/m3 and v-0.15stoke.arrow_forwardFor a new sailboat, a designer wants to determine the drag force that may be expected at a given speed. To do so, she places a model of the proposed hull in a test channel and uses three cables to keep its bow on the center-line of the channel. Dynamometer readings indicate that for a given speed, the tension is 35 lb in cable AB and 40 lb in cable AE. The drag force is exerted in the direction of Flow at point A. –7 ft - B E1.5 ft 4 ft Flow A 4 ft E What is the magnitude of the drag force in Ib? What is the magnitude of the tension force in cable AC in Ib? What is the angle a in degrees measured CCW from the vertical? What is the angle B in degrees measured CW from the vertical?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ficks First and Second Law for diffusion (mass transport); Author: Taylor Sparks;https://www.youtube.com/watch?v=c3KMpkmZWyo;License: Standard Youtube License