Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 80P
A cylindrical chimney 0.9 m in diameter and 22.5 m high is exposed to a 56 km/h wind (15°C and 101.3 kPa). Estimate the bending moment at the bottom of the chimney. Neglect end effects.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Consider a flying wing (such as the Northrop YB-49 of the early 1950s) with a wing are
of 206 m2, an aspect ratio of 10, a span effectiveness factor of 0.95, and an NACA 4412
airfoil. The weight of the airplane is 7.5 x 10° N. If the density altitude is 3 km and the
flight velocity is 100 m/s, calculate the total drag on the aircraft.
A 10.0 m by 3.0 m by 1.3 m barge (495 kg) is floating in water
(SG=1.05) and being loaded with a 0.32 m diameter dredging
liquid stream (SG = 1.41) with a velocity of 15.5 m/s. If the
minimum permissible freeboard during loading (boat edge
above the waterline) is 0.35 m, what is the maximum time
(seconds) that the barge can be 'filled'.
+0.32 m
BARGE
10.0 m
1.3 m
A proposed wind power plant in Batangas is designed to have a power generated output of 30MW. A propeller turbine is to be used. Survey showed that Batangas City has an average airvelocity of 10km/hr. A power coefficient of 0.4 is used and an impeller diameter is assumed notmore than 10 m. Determine the theoretical wind power output.
Chapter 9 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 9 - The roof of a minivan is approximated as a...Ch. 9 - A model of a river towboat is to be tested at 1:18...Ch. 9 - For flow over a smooth plate, what approximately...Ch. 9 - A model of a thin streamlined body is placed in a...Ch. 9 - A student is to design an experiment involving...Ch. 9 - A 1 m 2 m sheet of plywood is attached to the...Ch. 9 - The extent of the laminar boundary layer on the...Ch. 9 - Velocity profiles in laminar boundary layers often...Ch. 9 - An approximation for the velocity profile in a...Ch. 9 - Evaluate / for each of the laminar boundary-layer...
Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A fluid, with density = 1.5 slug/ft3, flows at U...Ch. 9 - Solve Problem 9.13 with the velocity profile at...Ch. 9 - Air flows in a horizontal cylindrical duct of...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A laboratory wind tunnel has a test section 25 cm...Ch. 9 - Air flows in the entrance region of a square duct,...Ch. 9 - A flow of 68F air develops in a flat horizontal...Ch. 9 - A flow of air develops in a horizontal cylindrical...Ch. 9 - Using numerical results for the Blasius exact...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - A smooth flat plate 2.4 m long and 0.6 m wide is...Ch. 9 - Consider flow of air over a flat plate. On one...Ch. 9 - A thin flat plate, L = 9 in. long and b = 3 ft...Ch. 9 - For a laminar boundary layer on a flat plate,...Ch. 9 - Air at atmospheric pressure and 20C flows over...Ch. 9 - A thin flat plate is installed in a water tunnel...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Prob. 34PCh. 9 - Water at 10C flows over a flat plate at a speed of...Ch. 9 - Use the momentum integral equation to derive...Ch. 9 - A smooth flat plate 1.6 ft long is immersed in 68F...Ch. 9 - Prob. 38PCh. 9 - A developing boundary layer of standard air on a...Ch. 9 - Assume the flow conditions given in Example 9.3....Ch. 9 - A flat-bottomed barge having a 150 ft 20 ft...Ch. 9 - European InterCity Express trains operate at...Ch. 9 - Grumman Corp. has proposed to build a magnetic...Ch. 9 - Repeat Problem 9.32, for an air flow at 80 ft/s,...Ch. 9 - The velocity profile in a turbulent boundary-layer...Ch. 9 - The U.S. Navy has built the Sea Shadow, which is a...Ch. 9 - The two rectangular smooth flat plates are to have...Ch. 9 - Standard air flows over a horizontal smooth flat...Ch. 9 - Air at standard conditions flows over a flat...Ch. 9 - A uniform flow of standard air at 60 m/s enters a...Ch. 9 - A laboratory wind tunnel has a flexible upper wall...Ch. 9 - Air flows in a cylindrical duct of diameter D = 6...Ch. 9 - Perform a cost-effectiveness analysis on a typical...Ch. 9 - Table 9.1 (on the web) shows the numerical results...Ch. 9 - A fluid flow enters the plane-wall diffuser that...Ch. 9 - For flow over a flat plate with zero pressure...Ch. 9 - A flat-bottomed barge, 80 ft long and 35 ft wide,...Ch. 9 - A towboat for river barges is tested in a towing...Ch. 9 - Plot the local friction coefficient cf, the...Ch. 9 - A smooth plate 3 m long and 0.9 m wide moves...Ch. 9 - Resistance of a barge is to be determined from...Ch. 9 - A nuclear submarine cruises fully submerged at 27...Ch. 9 - You are asked by your college crew to estimate the...Ch. 9 - The drag coefficient of a circular disk when...Ch. 9 - A steel sphere of 0.25 in. diameter has a velocity...Ch. 9 - A steel sphere (SG = 7.8) of 13 mm diameter falls...Ch. 9 - A sheet of plastic material 0.5 in. thick, with...Ch. 9 - As part of the 1976 bicentennial celebration, an...Ch. 9 - What constant speed will be attained by a lead (SG...Ch. 9 - Assuming a critical Reynolds number of 0.1,...Ch. 9 - Glass spheres of 0.1 in. diameter fall at constant...Ch. 9 - A rotary mixer is constructed from two circular...Ch. 9 - Calculate the drag of a smooth sphere of 0.3 m...Ch. 9 - Calculate the drag of a smooth sphere of 0.5 m...Ch. 9 - A cylindrical chimney 0.9 m in diameter and 22.5 m...Ch. 9 - The resistance to motion of a good bicycle on...Ch. 9 - Ballistic data obtained on a firing range show...Ch. 9 - A standard marine torpedo is 0.533 m in diameter...Ch. 9 - A large truck has an essentially boxlike body that...Ch. 9 - At a surprise party for a friend youve tied a...Ch. 9 - A 0.5-m-diameter hollow plastic sphere containing...Ch. 9 - A simple but effective anemometer to measure wind...Ch. 9 - The Willis Tower (formerly the Sears Tower) in...Ch. 9 - It is proposed to build a pyramidal building with...Ch. 9 - Calculate the drag forces on a 1/200 scale model...Ch. 9 - A circular disk is hung in an air stream from a...Ch. 9 - A vehicle is built to try for the land-speed...Ch. 9 - An F-4 aircraft is slowed after landing by dual...Ch. 9 - A tractor-trailer rig has frontal area A = 102 ft2...Ch. 9 - A 180hp sports car of frontal area 1.72 m2, with a...Ch. 9 - An object falls in air down a long vertical chute....Ch. 9 - Prob. 99PCh. 9 - A light plane tows an advertising banner over a...Ch. 9 - The antenna on a car is 10 mm in diameter and 1.8...Ch. 9 - Consider small oil droplets (SG = 0.85) rising in...Ch. 9 - Standard air is drawn into a low-speed wind...Ch. 9 - A small sphere with D = 6 mm is observed to fall...Ch. 9 - A tennis ball with a mass of 57 g and diameter of...Ch. 9 - A water tower consists of a 12-m-diameter sphere...Ch. 9 - A cast-iron 12-pounder cannonball rolls off the...Ch. 9 - A rectangular airfoil of 40 ft span and 6 ft chord...Ch. 9 - A rectangular airfoil of 9 m span and 1.8 m chord...Ch. 9 - Why is it possible to kick a football farther in a...Ch. 9 - If CL = 1.0 and CD = 0.05 for an airfoil, then...Ch. 9 - A wing model of 5 in. chord and 2.5 ft span is...Ch. 9 - A barge weighing 8820 kN that is 10 m wide, 30 m...Ch. 9 - A spherical sonar transducer with 15 in. diameter...Ch. 9 - While walking across campus one windy day, an...Ch. 9 - If the mean velocity adjacent to the top of a wing...Ch. 9 - The NACA 23015 airfoil is to move at 180 mph...Ch. 9 - A human-powered aircraft has a gross weight of 240...Ch. 9 - WiffleTM balls made from light plastic with...Ch. 9 - A model airfoil of chord 6 in. and span 30 in. is...Ch. 9 - An antique airplane carries 50 m of external guy...Ch. 9 - How do cab-mounted wind deflectors for...Ch. 9 - An airplane with an effective lift area of 25 m2...Ch. 9 - The U.S. Air Force F-16 fighter aircraft has wing...Ch. 9 - A light airplane, with mass M = 1000 kg, has a...Ch. 9 - A light airplane has 35-ft effective wingspan and...Ch. 9 - Assume the Boeing 727 aircraft has wings with NACA...Ch. 9 - Jim Halls Chaparral 2F sports-racing cars in the...Ch. 9 - Some cars come with a spoiler, a wing section...Ch. 9 - Roadside signs tend to oscillate in a twisting...Ch. 9 - Air moving over an automobile is accelerated to...Ch. 9 - A class demonstration showed that lift is present...Ch. 9 - Rotating cylinders were proposed as a means of...Ch. 9 - A baseball pitcher throws a ball at 80 mph. Home...
Additional Engineering Textbook Solutions
Find more solutions based on key concepts
Contrast the following terms: chief data officer; DBA data administration: database administration open source ...
Modern Database Management
Why have bandsawing machines largely replaced reciprocating saws?
Degarmo's Materials And Processes In Manufacturing
A Game of 21 For this assignment, you will write a program that lets the user play against the computer in a va...
Starting Out with C++ from Control Structures to Objects (9th Edition)
ICA 8-37
An ideal gas in a 1.25-gailon [gal] container is at a temperature of 125 degrees Celsius [°C] and pres...
Thinking Like an Engineer: An Active Learning Approach (4th Edition)
For the circuit shown, find (a) the voltage υ, (b) the power delivered to the circuit by the current source, an...
Electric Circuits. (11th Edition)
Define a method called changePopulation that could be added to the definition of the class SpeciesSecondTry in ...
Java: An Introduction to Problem Solving and Programming (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A smokestack is 25 m tall and1 m in diameter. It is exposed to wind of about 50 km/hr at standard atmospheric conditions (20°C). Calculate the bending moment at the base of the smokestack due to wind drag forces.arrow_forwardA radio antenna mounted on top of a car has a diameter of 3.35 x 10^3 m and a 1.22 m long. Determine (a) the bending moment at the base of the antenna if the car is driven 60 mph on still air at 20 C and atmospheric pressure.. (b) the power needed to overcome the aerodynamic drag of the antenna. Assume Cd = 1.3. and Rair 0.287 kPa / m^3 /kg . Karrow_forwardIn the vertical wind tunnel used in paratrooper training, find the wind tunnel free speed required to keep a 75 kg person suspended in the air in a horizontal position. The height of this person is 1.7m and the width is 38cm and the front drag coefficient is around 1. Atmospheric pressure and temperature inside the tunnel are Patm = 85kPa and T = 25C, respectively.arrow_forward
- Dresden, Germany has a population of 700,000 and a population density of2200 km-2 in the urban area. Assume that the electrical needs of Dresden are an average of1.0 kWe per capita and these are satisfied by a wind farm consisting of 100 m diameterthree-rotor wind turbines operating at optimal efficiency and with optimal spacing. If thewind velocity is constant at 7 m/s, what is the area of the wind farm? The optimal efficiency, η = 0.49 and The ideal spacing for a turbine is 300m by 1000 meters Sustainable energy, 2nd edition, Ch 10, Problem 17Parrow_forwardDresden, Germany has a population of 700,000 and a population density of2200 km-2 in the urban area. Assume that the electrical needs of Dresden are an average of1.0 kWe per capita and these are satisfied by a wind farm consisting of 100 m diameterthree-rotor wind turbines operating at optimal efficiency and with optimal spacing. If thewind velocity is constant at 7 m/s, what is the area of the wind farm? The optimal efficiency, η = 0.49 and The ideal spacing for a turbine is 300m by 1000 meters Answer in km2arrow_forwardA Kelvin oval is formed by a line–vortex pair with K =9 m2/s, a = 1 m, and U =10 m/s. What are the height,width, and shoulder velocity of this oval?arrow_forward
- What is the relationship between the average power in the wind and average speed? A horizontal-axis wind turbine with a 20-m diameter rotor is 30% efficient in 10m/s winds at 1 atm of pressure and 15°C temperature. How much power would it produce in those winds?arrow_forwardAnswer ASAP would be appreciatedarrow_forwardAnswer ASAP would be appreciatedarrow_forward
- Answer ASAP would be appreciatedarrow_forwardAn air current impinges laterally on an isolated train car of dimensions 3 m high, 12.2 m long and 1.8 m deep, with a height above the ground of 0.9 m and a distance between wheels of 1.5 m (As shown below). shown in the figure). Determine the wind speed needed to overturn the car if it has a weight of 178,000 N, CD 1.2. Use free body analysis. Consider the position of the center of gravity. p= 1.22kg/m3 Solution 164km/h U 1.5 m 1.8 m W 12.2 m 1.5 m F 1.5 m 0.9 marrow_forwardThe average wind speed at a proposed HAWT wind farm site is 12.5 m/s. The power coefficient of each wind turbine is predicted to be 0.41, and the combined efficiency of the gearbox and generator is 92 percent. Each wind turbine must produce 2.5 MW of electrical power when the wind blows at 12.5 m/s. (a) Calculate the required diameter of each turbine disk. Take the average air density to be ? = 1.2 kg/m3 . (b) If 30 such turbines are built on the site and an average home in the area consumes approximately 1.5 kW of electrical power, estimate how many homes can be powered by this wind farm, assuming an additional efficiency of 96 percent to account for the powerline losses.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY