Fox And Mcdonald's Introduction To Fluid Mechanics
9th Edition
ISBN: 9781118921876
Author: Pritchard, Philip J.; Leylegian, John C.; Bhaskaran, Rajesh
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 38P
To determine
The plot of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A vertical air stream flowing at a velocity of 100 m/s supports a ball of 60 mm in diameter. Taking the density of air as 1.2 kg/m³ and kinematic viscosity as 1.6 stokes, the weight of the ball that is supported is (if coefficient of drag C= 0.8)
A portion of ship’s hull can be idealized as a flat plate, 100ft long. If the ship’s velocity is 10 ft/s and the properties of the water it is moving through are ρ=62.4lbm/ft³ and µ=3.0lbm/hr.ft, calculate the maximum boundary layer thickness.
Problem 1. For uniform flow over a flat plate, a useful approximation for the x-component of velocity in an
incompressible laminar boundary layer is a parabolic variation from the velocity at the surface, u (y = 0) = 0
due to no-slip condition, to the free-stream velocity at the edge of the boundary layer, u (y = 8) = U. The
equation for the profile is given by
u/U = 2 (y/d) – (y/8)², where d = cx 1/2 and c is a constant
-
(a) Show that the simplest expression for the y-component of velocity is
(b) Plot u/U and v/U versus y/d at x =
separate graphs.
2
*=4[4(9)²¯ +(9)*]
= 0.50 m where = 5.0 mm. Use the x-axis for velocity and plot on
(c) Find the maximum value for v/U at this location and discuss its magnitude compared to u/U.
АУ
u(x, y)
U
Chapter 9 Solutions
Fox And Mcdonald's Introduction To Fluid Mechanics
Ch. 9 - The roof of a minivan is approximated as a...Ch. 9 - A model of a river towboat is to be tested at 1:18...Ch. 9 - For flow over a smooth plate, what approximately...Ch. 9 - A model of a thin streamlined body is placed in a...Ch. 9 - A student is to design an experiment involving...Ch. 9 - A 1 m 2 m sheet of plywood is attached to the...Ch. 9 - The extent of the laminar boundary layer on the...Ch. 9 - Velocity profiles in laminar boundary layers often...Ch. 9 - An approximation for the velocity profile in a...Ch. 9 - Evaluate / for each of the laminar boundary-layer...
Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A fluid, with density = 1.5 slug/ft3, flows at U...Ch. 9 - Solve Problem 9.13 with the velocity profile at...Ch. 9 - Air flows in a horizontal cylindrical duct of...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - Evaluate the displacement thickness and the...Ch. 9 - A laboratory wind tunnel has a test section 25 cm...Ch. 9 - Air flows in the entrance region of a square duct,...Ch. 9 - A flow of 68F air develops in a flat horizontal...Ch. 9 - A flow of air develops in a horizontal cylindrical...Ch. 9 - Using numerical results for the Blasius exact...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - Using numerical results obtained by Blasius (Table...Ch. 9 - A smooth flat plate 2.4 m long and 0.6 m wide is...Ch. 9 - Consider flow of air over a flat plate. On one...Ch. 9 - A thin flat plate, L = 9 in. long and b = 3 ft...Ch. 9 - For a laminar boundary layer on a flat plate,...Ch. 9 - Air at atmospheric pressure and 20C flows over...Ch. 9 - A thin flat plate is installed in a water tunnel...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Assume laminar boundary-layer flow to estimate the...Ch. 9 - Prob. 34PCh. 9 - Water at 10C flows over a flat plate at a speed of...Ch. 9 - Use the momentum integral equation to derive...Ch. 9 - A smooth flat plate 1.6 ft long is immersed in 68F...Ch. 9 - Prob. 38PCh. 9 - A developing boundary layer of standard air on a...Ch. 9 - Assume the flow conditions given in Example 9.3....Ch. 9 - A flat-bottomed barge having a 150 ft 20 ft...Ch. 9 - European InterCity Express trains operate at...Ch. 9 - Grumman Corp. has proposed to build a magnetic...Ch. 9 - Repeat Problem 9.32, for an air flow at 80 ft/s,...Ch. 9 - The velocity profile in a turbulent boundary-layer...Ch. 9 - The U.S. Navy has built the Sea Shadow, which is a...Ch. 9 - The two rectangular smooth flat plates are to have...Ch. 9 - Standard air flows over a horizontal smooth flat...Ch. 9 - Air at standard conditions flows over a flat...Ch. 9 - A uniform flow of standard air at 60 m/s enters a...Ch. 9 - A laboratory wind tunnel has a flexible upper wall...Ch. 9 - Air flows in a cylindrical duct of diameter D = 6...Ch. 9 - Perform a cost-effectiveness analysis on a typical...Ch. 9 - Table 9.1 (on the web) shows the numerical results...Ch. 9 - A fluid flow enters the plane-wall diffuser that...Ch. 9 - For flow over a flat plate with zero pressure...Ch. 9 - A flat-bottomed barge, 80 ft long and 35 ft wide,...Ch. 9 - A towboat for river barges is tested in a towing...Ch. 9 - Plot the local friction coefficient cf, the...Ch. 9 - A smooth plate 3 m long and 0.9 m wide moves...Ch. 9 - Resistance of a barge is to be determined from...Ch. 9 - A nuclear submarine cruises fully submerged at 27...Ch. 9 - You are asked by your college crew to estimate the...Ch. 9 - The drag coefficient of a circular disk when...Ch. 9 - A steel sphere of 0.25 in. diameter has a velocity...Ch. 9 - A steel sphere (SG = 7.8) of 13 mm diameter falls...Ch. 9 - A sheet of plastic material 0.5 in. thick, with...Ch. 9 - As part of the 1976 bicentennial celebration, an...Ch. 9 - What constant speed will be attained by a lead (SG...Ch. 9 - Assuming a critical Reynolds number of 0.1,...Ch. 9 - Glass spheres of 0.1 in. diameter fall at constant...Ch. 9 - A rotary mixer is constructed from two circular...Ch. 9 - Calculate the drag of a smooth sphere of 0.3 m...Ch. 9 - Calculate the drag of a smooth sphere of 0.5 m...Ch. 9 - A cylindrical chimney 0.9 m in diameter and 22.5 m...Ch. 9 - The resistance to motion of a good bicycle on...Ch. 9 - Ballistic data obtained on a firing range show...Ch. 9 - A standard marine torpedo is 0.533 m in diameter...Ch. 9 - A large truck has an essentially boxlike body that...Ch. 9 - At a surprise party for a friend youve tied a...Ch. 9 - A 0.5-m-diameter hollow plastic sphere containing...Ch. 9 - A simple but effective anemometer to measure wind...Ch. 9 - The Willis Tower (formerly the Sears Tower) in...Ch. 9 - It is proposed to build a pyramidal building with...Ch. 9 - Calculate the drag forces on a 1/200 scale model...Ch. 9 - A circular disk is hung in an air stream from a...Ch. 9 - A vehicle is built to try for the land-speed...Ch. 9 - An F-4 aircraft is slowed after landing by dual...Ch. 9 - A tractor-trailer rig has frontal area A = 102 ft2...Ch. 9 - A 180hp sports car of frontal area 1.72 m2, with a...Ch. 9 - An object falls in air down a long vertical chute....Ch. 9 - Prob. 99PCh. 9 - A light plane tows an advertising banner over a...Ch. 9 - The antenna on a car is 10 mm in diameter and 1.8...Ch. 9 - Consider small oil droplets (SG = 0.85) rising in...Ch. 9 - Standard air is drawn into a low-speed wind...Ch. 9 - A small sphere with D = 6 mm is observed to fall...Ch. 9 - A tennis ball with a mass of 57 g and diameter of...Ch. 9 - A water tower consists of a 12-m-diameter sphere...Ch. 9 - A cast-iron 12-pounder cannonball rolls off the...Ch. 9 - A rectangular airfoil of 40 ft span and 6 ft chord...Ch. 9 - A rectangular airfoil of 9 m span and 1.8 m chord...Ch. 9 - Why is it possible to kick a football farther in a...Ch. 9 - If CL = 1.0 and CD = 0.05 for an airfoil, then...Ch. 9 - A wing model of 5 in. chord and 2.5 ft span is...Ch. 9 - A barge weighing 8820 kN that is 10 m wide, 30 m...Ch. 9 - A spherical sonar transducer with 15 in. diameter...Ch. 9 - While walking across campus one windy day, an...Ch. 9 - If the mean velocity adjacent to the top of a wing...Ch. 9 - The NACA 23015 airfoil is to move at 180 mph...Ch. 9 - A human-powered aircraft has a gross weight of 240...Ch. 9 - WiffleTM balls made from light plastic with...Ch. 9 - A model airfoil of chord 6 in. and span 30 in. is...Ch. 9 - An antique airplane carries 50 m of external guy...Ch. 9 - How do cab-mounted wind deflectors for...Ch. 9 - An airplane with an effective lift area of 25 m2...Ch. 9 - The U.S. Air Force F-16 fighter aircraft has wing...Ch. 9 - A light airplane, with mass M = 1000 kg, has a...Ch. 9 - A light airplane has 35-ft effective wingspan and...Ch. 9 - Assume the Boeing 727 aircraft has wings with NACA...Ch. 9 - Jim Halls Chaparral 2F sports-racing cars in the...Ch. 9 - Some cars come with a spoiler, a wing section...Ch. 9 - Roadside signs tend to oscillate in a twisting...Ch. 9 - Air moving over an automobile is accelerated to...Ch. 9 - A class demonstration showed that lift is present...Ch. 9 - Rotating cylinders were proposed as a means of...Ch. 9 - A baseball pitcher throws a ball at 80 mph. Home...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The sketch shows a flat plate aligned parallel to an incompressible airstream. Assume a velocity profile, and use the momentum integral to find the boundary layer thickness δ as a function of x, ν, and U. (ν=μ/ρ).arrow_forwardSolve itarrow_forward8. Determine the drag force for a plate with a length of 48 cm and width of 15 cm. The plate is positioned in an oil stream moving at a velocity of 6.1 m/s. Also, find and the boundary layer thickness and shear stress at the rear-edge of the plate. The specific gravity of the oil is 0.925 and its kinematic viscosity is 0.9 x 104 m²/sarrow_forward
- 1. Consider the laminar boundary layer over a flat plate. Let 8(x) be the exact boundary layer thickness along the plate, where x is the distance from the leading edge of the flat plate. If we approximate the velocity profile by u/U = 2(y/5) - 2(y/8)³ + (y/8)4 for y≤ 8 and u = U for y > 8. (a) Show that this profile satisfies the appropriate boundary conditions; (b) Determine the boundary layer displacement thickness, 8* (x), momentum thickness 0(x), and the wall shear stress Tw in terms of 8(x) and μ and U if needed.arrow_forwardFlow straighteners consist of arrays of narrow ducts placed in a flow to remove swirl and other transverse (secondary) velocities. One element can be idealised as a square box with thin sides as shown below. Calculate the pressure drop across a box with L=22 cm and a= 2.7 cm, if air with free-stream velocity of Uo = 11 m/s flows though the straightener. Use laminar flat-plate theory and take u = 1.85 x 10-5 Pa.s and p = 1.177kg/m³ . %3D %3D a Uo Figure 1: Flow across straighteners.arrow_forwardFLUID MECHANICS EXPERTS, PLEASE NEED YOUR HELParrow_forward
- Spaces h1=15 mm and h2=20 mm wide between upper and lower stationary plates and a very thin moving plate is filled with crude oil (oil =7.18x10-3 Pas) and water (water =1.00x10-3 Pas), respectively. What force is required to drag the plate of 0.5 m2 area between the surfaces at a speed of v=0.15 m/s. Assume linear velocity profilearrow_forwardFor the steady flat plate boundary layer flow, determine the wall shear stress assuming the following velocity profile. Where, δ is the boundary layer thickness and U is the outer flow velocity (constant).arrow_forward. Water flows at a velocity of 1.2 m/s over a flat plate 1.2 m long. Assume 1/7th power law and determine the boundary layer thickness and displacement thickness. Compare the values with values calculated using laminar flow correlations. v = 1 x 10-6m2/s.arrow_forward
- A ship 200 f t long with a wetted area of 5000 ft2 moves at 25 ft/s. Find the friction drag, assuming that the ship surface may be modeled as a flat plate, and ρ = 1.94 slugs/ft3 and ν = 1.2 × 10−5 ft2/s. What is the minimum power required to move the ship at this speed?arrow_forwardConsider a laminar boundary layer flow over a flat plate for which the velocity profile can be approx- imated by, u/U = 2(y/δ) − 2(y/δ)3 + (y/δ)4 Show that this profile satisfies the appropriate boundary conditions. Using the momentum integral relation, equ. (9.26), derive expressions for δ/x and τw(x). Inte- grate τw(x) and obtain an expression for the drag coefficient, CD, as a function of Rel, where l is length of plate. Check/compare with results in Table 9.2.arrow_forwardTwo large fixed parallel planes are 12 mm apart. The space between the surfaces Example is filled with oil of viscosity 0.972 N.s/m². A flat thin plate 0.25 m² area moves through the oil at a velocity of 0.3 m/s. Calculate the drag force: (1) When the plate is equidistant from both the planes, and (ii) When the thin plate is at a distance of 4 mm from one of the plane surfaces. Fixed parallel plane 6 mm Plate 0.3 m/s F 6 mm 12 mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY