
Concept explainers
(a)
Interpretation:
The boiling point of the solution formed upon the addition of
Concept introduction:
The effect of the addition of a non-volatile component to a solvent is that there is an increase in the boiling point. This is called elevation in boiling point. Such an increase is observed since the surface of the solvent is saturated with solute particles. This results in the lesser escape of gaseous molecules and hence the vapor pressure of the solution gets lowered compared to the vapor pressure found above the pure solvent to which no solute has been added.
The temperature at which the vapor pressure of solution becomes equal to the atmospheric pressure is known as the boiling point. Due to the lesser vapor pressure, the solution needs to be heated to higher temperatures in order to boil it. Therefore, the boiling point of the solution is elevated.
One mole of the nonvolatile solute increases the boiling point of one kilogram of water by
The extent of elevation in boiling point is directly proportional to the amount of non-volatile solute added. For example,
The formula to calculate the number of moles from the mass is given as follows:
The formula to calculate the molality is as follows:
The formula to calculate the elevation in boiling point is as follows:
The formula to calculate the molarity is as follows:
The formula to calculate

Want to see the full answer?
Check out a sample textbook solution
Chapter 8 Solutions
General, Organic, & Biological Chemistry
- If a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forwardWould the following organic synthesis occur in one step? Add any missing products, required catalysts, inorganic reagents, and other important conditions. Please include a detailed explanation and drawings showing how the reaction may occur in one step.arrow_forward(a) Sketch the 'H NMR of the following chemical including the approximate chemical shifts, the multiplicity (splitting) of all signals and the integration (b) How many signals would you expect in the 13C NMR? CH3arrow_forward
- Draw the Show the major and minor product(s) for the following reaction mechanisms for both reactions and show all resonance structures for any Explain why the major product is favoured? intermediates H-Brarrow_forwardChoose the right answerarrow_forward8. What is the major product of the following reaction? KMnO4 b a TOH OH OH C d OH "OH HO OH OHarrow_forward
- Choose the right answerarrow_forward3. Draw ALL THE POSSBILE PRODUCTS AND THE MECHANISMS WITH ALL RESONANCE STRUCTURES. Explain using the resonance structures why the major product(s) are formed over the minor product(s). H₂SO4, HONO CHarrow_forward7. Provide the product(s), starting material(s) and/or condition(s) required for the No mechanisms required. below reaction HO + H-I CI FO Br2, FeBr3 O I-Oarrow_forward
- 6. Design the most efficient synthesis of the following product starting from phenot Provide the reaction conditions for each step (more than one step is required) and explain the selectivity of each reaction. NO MECHANISMS ARE REQUIRED. OH step(s) CIarrow_forwardWhat is the skeletal structure of the product of the following organic reaction?arrow_forwardIf a reaction occurs, what would be the major products? Please include a detailed explanation as well as a drawing showing how the reaction occurs and what the final product is.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning





