a)
Interpretation:
The electronic configuration of given element has to be derived using the (s, p, d, f) orbital box notation method and noble gas configuration methods.
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons (e-) of an given molecule or respective atoms in atomic or molecular orbital’s.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
b)
Interpretation:
For each of these elements, the another element in the same periodic group has to be named.
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons (e-) of an given molecule or respective atoms in atomic or molecular orbital’s.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
c)
Interpretation:
The light atom used as a projectile has to be identified.
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons (e-) of an given molecule or respective atoms in atomic or molecular orbital’s.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Chemistry & Chemical Reactivity
- How does Daltons atomic theory account for the Law of Conservation of Mass?arrow_forward2-102 An element consists of 90.51% of an isotope with a mass of 19.992 amu, 0.27% of an isotope with a mass of 20.994 amu, and 9.22% of an isotope with a mass of 21.990 amu. Calculate the average atomic mass and identify the element.arrow_forwardWhich of the following are isotopes of element X, the atomic number for which is 9: 919X, 920X, 189X, and 921X?arrow_forward
- What evidence led to the conclusion that cathode rays had a negative charge?arrow_forward2.84 Early attempts to arrange the elements often focused on atomic weight. Mendeleev considered a number of properties in addition to atomic weight, so he realized that some elements seemed out of place when ordered by atomic weight. Using the modern periodic table, identify elements for which Mendeleev must have had to switch the order in order to get the correct sequence of elements.arrow_forward2.42 What is a period in the periodic table? From what does it derive its name?arrow_forward
- Based on periodic table position, select the two elements in each set of elements that would be expected to have similar chemical properties. a. 11Na, 14Si, 23V, 55Cs b. 13Al, 19K, 32Ge, 50Sn c. 37Rb, 38Sr, 54Xe, 56Ba d. 2He, 6C, 8O, 10Nearrow_forward2-27 If each atom in Problem 2-26 acquired two more neutrons, what element would each then be?arrow_forward2-69 (Chemical Connections 2A) Why does the body need sulfur, calcium, and iron?arrow_forward
- Predict and test the behavior of α particles fired at a “plum pudding” model atom.(a) Predict the paths taken by α particles that are fired at atoms with a Thomson’s plum pudding model structure.Explain why you expect the α particles to take these paths.(b) If α particles of higher energy than those in (a) are fired at plum pudding atoms, predict how their paths will differ from the lower-energy α particle paths. Explain your reasoning.(c) Now test your predictions from (a) and (b). Open the Rutherford Scattering simulation (http://openstaxcollege.org/l/16PhetScatter) and select the “Plum Pudding Atom” tab. Set “Alpha ParticlesEnergy” to “min,” and select “show traces.” Click on the gun to start firing α particles. Does this match your prediction from (a)? If not, explain why the actual path would be that shown in the simulation. Hit the pause button,or “Reset All.” Set “Alpha Particles Energy” to “max,” and start firing α particles. Does this match your prediction from (b)? If not,…arrow_forward2. (a) What do you understand by the statement: "the energy of the electrons in an atom is quantized"? (b) Why did Rutherford select alpha particles in his gold foil experiment? Briefly explain your answer in own words.arrow_forward(d) the ion with 74 electrons, 116 neutrons, and a +3 chargearrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning