
Using orbital box diagrams, depict an electron configuration for each of the following ions: (a) Mg2+, (b) K+, (c) Cl−, and (d) O2−.
(a)

Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Explanation of Solution
Let us consider the orbital filling method of Magnesium (
Given the Magnesium atom has loss of two electrons from outermost shells.
When (
Hence, the electronic configuration of Magnesium ions (
(b)

Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Explanation of Solution
Let us consider the orbital filling method of Potassium ions (
The single potassium atoms having (19) electrons in (s, p) orbital shells and its atomic number (Z=19). Moreover the (K) atoms has loss of one electrons in outermost (4s) shells.
Hence we can write oxidation reaction has shown below.
When (K) was oxidized to (K+) ions, it lost for one electron in outermost (4s) orbitals, hence this orbital notation method shows below.
Hence, the electronic configuration of Potassium ions (
(c)

Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Explanation of Solution
Let us consider the orbital filling method of Chlorine ions (Cl-) ions.
The single chlorine atoms having (17) electrons in (s, p) orbital shells and its atomic number (Z=17). Moreover the (Cl) atom has gain of one electron into outermost (3p) shells.
When (Cl) was gain to (Cl-) ions, it gain for one electron into outermost (3s) orbitals, hence this orbital notation method shows below.
Hence, the electronic configuration of chlorine ions (Cl-) =
(d)

Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Explanation of Solution
Finally we consider the orbital filling method of Oxygen (II) ions (O2-) ions.
The oxygen atom (O) is a monoatomic anion one or more electrons added to the valance shell of a non-metal atom so that electronic configuration of the ion is the same as the electronic configuration of the noble gas in the periodic table. Here single (O) atom gains of two electrons and oxygen become oxygen anion, attains electron configuration as the noble gas Neon (Ne).
When (O) was gain to (O2-) ions, it gain for two electrons into outermost (2p) orbitals, hence this orbital notation method shows below.
Hence, the electronic configuration of oxygen ions (O2-) =
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry & Chemical Reactivity
- Indicate the formula of the product obtained by reacting methyl 5-chloro-5-oxopentanoate with 1 mole of 4-penten-1-ylmagnesium bromide.arrow_forwardIn the two chair conformations of glucose, the most stable is the one with all the OH groups in the equatorial position. Is this correct?arrow_forwardIndicate the formula of the product obtained by reacting D-Galactose with hydroxylamine.arrow_forward
- helparrow_forwardThe temperature on a sample of pure X held at 1.25 atm and -54. °C is increased until the sample boils. The temperature is then held constant and the pressure is decreased by 0.42 atm. On the phase diagram below draw a path that shows this set of changes. pressure (atm) 2 0 0 200 400 temperature (K) Xarrow_forwardQUESTION: Answer Question 5: 'Calculating standard error of regression' STEP 1 by filling in all the empty green boxes *The values are all provided in the photo attached*arrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
