Using orbital box diagrams, depict an electron configuration for each of the following ions: (a) Mg2+, (b) K+, (c) Cl−, and (d) O2−.
(a)
Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Explanation of Solution
Let us consider the orbital filling method of Magnesium (
Given the Magnesium atom has loss of two electrons from outermost shells.
When (
Hence, the electronic configuration of Magnesium ions (
(b)
Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Explanation of Solution
Let us consider the orbital filling method of Potassium ions (
The single potassium atoms having (19) electrons in (s, p) orbital shells and its atomic number (Z=19). Moreover the (K) atoms has loss of one electrons in outermost (4s) shells.
Hence we can write oxidation reaction has shown below.
When (K) was oxidized to (K+) ions, it lost for one electron in outermost (4s) orbitals, hence this orbital notation method shows below.
Hence, the electronic configuration of Potassium ions (
(c)
Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Explanation of Solution
Let us consider the orbital filling method of Chlorine ions (Cl-) ions.
The single chlorine atoms having (17) electrons in (s, p) orbital shells and its atomic number (Z=17). Moreover the (Cl) atom has gain of one electron into outermost (3p) shells.
When (Cl) was gain to (Cl-) ions, it gain for one electron into outermost (3s) orbitals, hence this orbital notation method shows below.
Hence, the electronic configuration of chlorine ions (Cl-) =
(d)
Interpretation:
The electronic configuration has to be depicted for
Concept Introduction:
Electronic configuration: The electronic configuration is the distribution of electrons of an given molecule or respective atoms in atomic or molecular orbitals.
Aufbau principle: This rule statues that ground state of an atom or ions electrons fill atomic orbitals of the lowest available energy levels before occupying higher levels. If consider the 1s shell is filled the 2s subshell is occupied.
Hund's Rule: The every orbital in a subshell is singly occupied with one electron before any one orbital is doubly occupied, and all electrons in singly occupied orbitals have the same spin.
Pauli exclusion rule: an atomic orbital may describe at most two electrons, each with opposite spin direction.
Explanation of Solution
Finally we consider the orbital filling method of Oxygen (II) ions (O2-) ions.
The oxygen atom (O) is a monoatomic anion one or more electrons added to the valance shell of a non-metal atom so that electronic configuration of the ion is the same as the electronic configuration of the noble gas in the periodic table. Here single (O) atom gains of two electrons and oxygen become oxygen anion, attains electron configuration as the noble gas Neon (Ne).
When (O) was gain to (O2-) ions, it gain for two electrons into outermost (2p) orbitals, hence this orbital notation method shows below.
Hence, the electronic configuration of oxygen ions (O2-) =
Want to see more full solutions like this?
Chapter 7 Solutions
Chemistry & Chemical Reactivity
- (a) What is the hybridization of the carbon in the methyl cation (CH3*) and in the methyl anion (CH3¯)? (b) What is the approximate H-C-H bond angle in the methyl cation and in the methyl anion?arrow_forwardQ8: Draw the resonance structures for the following molecule. Show the curved arrows (how you derive each resonance structure). Circle the major resonance contributor.arrow_forwardQ4: Draw the Lewis structures for the cyanate ion (OCN) and the fulminate ion (CNO). Draw all possible resonance structures for each. Determine which form for each is the major resonance contributor.arrow_forward
- In the following molecule, indicate the hybridization and shape of the indicated atoms. CH3 N CH3 HÖ: H3C CI: ::arrow_forwardQ3: Draw the Lewis structures for nitromethane (CH3NO2) and methyl nitrite (CH3ONO). Draw at least two resonance forms for each. Determine which form for each is the major resonance contributor.arrow_forwardQ1: Draw a valid Lewis structures for the following molecules. Include appropriate charges and lone pair electrons. If there is more than one Lewis structure available, draw the best structure. NH3 Sulfate Boron tetrahydride. C3H8 (linear isomer) OCN NO3 CH3CN SO2Cl2 CH3OH2*arrow_forward
- Q2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forwardPlease correct answer and don't used hand raitingarrow_forward9. The following reaction, which proceeds via the SN1/E1 mechanisms, gives three alkene products (A, B, C) as well as an ether (D). (a) Show how each product arises mechanistically. (b) For the alkenes, determine the major product and justify your answer. (c) What clues in the reaction as shown suggest that this reaction does not go by the SN2/E2 mechanism route? (CH3)2CH-CH-CH3 CH3OH 1 Bl CH3OH ⑧· (CH3)2 CH-CH=CH2 heat H ⑥③ (CH3)2 C = C = CH3 © СнЗ-С-Снаснз сна (CH 3 ) 2 C H G H CH 3 оснзarrow_forward
- Please Don't used hand raitingarrow_forward7. For the following structure: ← Draw structure as is - NO BI H H Fisher projections (a) Assign R/S configuration at all chiral centers (show all work). Label the chiral centers with an asterisk (*). (b) Draw an enantiomer and diastereomer of the above structure and assign R/S configuration at all chiral centers (again, show all work). (c) On the basis of the R/S system, justify your designation of the structures as being enantiomeric or diastereomeric to the original structure.arrow_forwardDon't used Ai solutionarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning