(a)
Interpretation:
The equilibrium constant for the following reaction has to be determined.
Concept Introduction:
Equilibrium constant is explains the relationship among reactant and product at equilibrium for a particular reaction.
The equilibrium constant expression is expressed by the formula,
It is the ratio of concentration of product raised to power of their corresponding coefficient of stoichiometry and concentration of reactant raised to power of their corresponding coefficient of stoichiometry at equilibrium.
(b)
Interpretation:
K for the given reaction at
Concept Introduction:
Equilibrium constant:
It is the ratio of products to reactants has a constant value when the reaction is in equilibrium at a certain temperature. And it is represented by the letter K.
For a reaction,
The equilibrium constant is,
where,
a, b, c and d are the
If
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
FUND.OF GEN CHEM CHAP 1-13 W/ACCESS
- The reaction CO2(g) + H2O(l) ⇔ H+(aq) + HCO3-(aq) has ΔH° = -12.65 kJ mol-1 and ΔS° = -192.5 J mol-1 K-1. Calculate the equilibrium constant when the temperature is 4.00 °C. (R = 8.3145 J mol-1 K-1) Multiply your answer by 109 before entering it. (Hint: remember that when calculating ΔG°, all values must be for standard state.)arrow_forwardA reaction of importance in the formation of smog is that between ozone and nitrogen monoxide described by 03(g) + NO(g) → O2(g) + NO2(g) The rate law for this reaction is rate of reaction = k[03][NO] Given that k = 2.71 × 106 M−¹.s¯¹ at a certain temperature, calculate the initial reaction rate when [03] and [NO] remain essentially constant at the values [03]0 = 5.56 × 10-6 M and [NO]o = 6.37 x 10-5 M, owing to continuous production from separate sources. initial reaction rate: Calculate the number of moles of NO2 (g) produced per hour per liter of air. NO2 produced: M.s-1 mol·h¹.L-1arrow_forwardCalculate ΔG° (answer in kJ/mol) for each of the following reactions from the equilibrium constant at the temperature given. (d)CoO(s)+CO(g)⇌Co(s)+CO2(g) T=550°C Kp=4.90×102 (e)CH3NH2(aq)+H2O(l)⟶CH3NH3+(aq)+OH−(aq) T=25°C Kp=4.4×10−4 (f)PbI2(s)⟶Pb2+(aq)+2I−(aq) T=25°C Kp=8.7×10arrow_forward
- A certain first order reaction has the rate law Rate = k[A] with k=0.0068 sec-1. If the initial concentration of A is 0.75 M, what will be the concentration of A after 1 minute? What is the half-life for this reaction? How much time will it take for 75% of A to react? How much A will be left after the passage of three half-lives? What is the initial rate of the reaction?arrow_forwardThe value of delta g for the conversion of 3-phosphoglycerate to 2-phosphoglycerate (2PG) is +4.40 kJ/mol. If the concentration of 3-phosphoglycerate at equilibrium is 2.05 mM, what is the concentration of 2 phosphoglycerate? Assume the temperature of 250 celsiusarrow_forwardDirect methanol fuel cells (DMFCS) have shown some promise as a viable option for providing "green" energy to small electrical devices. Calculate E° for the reaction that takes place in DMFCS: CH3OH(I) + 3/2 02(g) → CO2(g) + 2 H20(1) Use the following values. AG°H,0(1) = -237 kJ/mol AG°O2(g) = 0 kJ/mol AG°CO2(9) = -394 kJ/mol AG°CH3OH(I) = -166 kJ/mol. E° = Varrow_forward
- Calculate ΔG for the reaction H2O(l) ⇆ H+(aq) + OH−(aq) at 25°C for the following conditions. [H+] = 3.1 M, [OH−] = 4.7 ×10−4 Marrow_forwardFor a particular reaction, AH° = −16.1 kJ/mol and AS° = −21.8 J/(mol·K). Assuming these values change very little with temperature, at what temperature does the reaction change from nonspontaneous to spontaneous in the forward direction? OT= Is the reaction in the forward direction spontaneous at temperatures greater than or less than the calculated temperature? less than greater than Karrow_forwardThe following reaction plays a key role in the destruction of ozone in the atmosphere: Cl(g)+ O3 (g)-> ClO(g)+O2 (g) Given the standard molar entropies (S°) below, calculate the ΔS for this reaction. S°C1O = 218.9 J/mol*K S°O3 = 238.8 J/mol*K S°Cl = 165.2 J/mol*K S°O2= 205.0 J/mol*K _______ J/K = ΔSarrow_forward
- Calculate the value of K for a reaction that has ΔG° = 37.6 kJ mol-1 at 37.0 °C. (R = 8.3145 J mol-1 K-1)arrow_forwardGiven the initial rate data for the reaction A + B → C, determine the rate expression for the reaction. [A], M [B], M A[C]/At (initial) M/s 0.0418 0.122 2.73 x 10-4 0.0836 0.122 10.9 × 10 4 0.0418 0.488 2.73 x 104 O A[C] At ○ A[C] ΔΙ = 0.439 Ms[A][B]² = 1.27 M²s¹ [A][B] ● A[C] = 6.53 × 10³ s¹ [A] At O A[C] = 0.156 M's¹[A]² At ○ A[C] At = 5.35 x 102 M2s[A][B]arrow_forwardWrite net ionic equations for the following reactions:arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON