Concept explainers
(a)
Interpretation: The polysaccharides amylopectin, amylose, cellulose, chitin, glycogen, heparin and hyaluronic acid have to be matched with the given glycosidic linkage characterization.
Concept introduction: Glycosidic linkage is a type of covalent bond that joins one carbohydrate to another carbohydrate leading to the formation of disaccharide, oligosaccharides and polysaccharides.
(a)
Answer to Problem 7.163EP
In the polysaccharides amylose, cellulose, chitin and heparin, all the glycosidic linkages are same.
Explanation of Solution
Amylose is an unbranched polysaccharide of starch. The glycosidic linkage present in amylose is
Amylopectin is a branched polysaccharide of starch. The glycosidic linkages present in amylopectin are
Cellulose provides the structural component of plant cell walls. Theglycosidic linkage present incellulose is
Chitin is an unbranchedN-acetyl-d-glucosamine polysaccharide. The glycosidic linkage present in chitin is
Heparin is a type of acidic polysaccharide. It contains the repeating unit of disaccharides. The glycosidic linkage present in heparin is
Hyaluronic acid is a type acidic polysaccharide that is, it has disaccharide as the repeating unit. The glycosidic linkages present in hyaluronic acid are
Glycogen is a starch polysaccharide. It stores glucose in human body and animals. The glycosidic linkage present in glycogen are both
Hence, the polysaccharides amylose, chitin, cellulose and heparin have all the same glycosidic linkages.
(b)
Interpretation: The polysaccharides amylopectin, amylose, cellulose, chitin, glycogen, heparin and hyaluronic acid have to be matched with the given glycosidic linkage characterization.
Concept introduction: Glycosidic linkage is a type of covalent bond that joins one carbohydrate to another carbohydrate leading to the formation of disaccharide, oligosaccharides and polysaccharides.
(b)
Answer to Problem 7.163EP
In the polysaccharides amylopectin and glycogen, some but not all of the linkages are
Explanation of Solution
Amylose is an unbranched polysaccharide of starch. The glycosidic linkage present in amylose is
Amylopectin is a branched polysaccharide of starch. The glycosidic linkages present in amylopectin are
Cellulose provides the structural component of plant cell walls. The glycosidic linkage present in cellulose is
Chitin is an unbranchedN-acetyl-d-glucosamine polysaccharide. The glycosidic linkage present in chitin is
Heparin is a type of acidic polysaccharide. It contains the repeating unit of disaccharides. The glycosidic linkage present in heparin is
Hyaluronic acid is a type acidic polysaccharide that is, it has disaccharide as the repeating unit. The glycosidic linkages present in hyaluronic acid are
Glycogen is a starch polysaccharide. It stores glucose in human body and animals. The glycosidic linkage present in glycogen are both
Hence, the polysaccharides amylopectin and glycogen have some but not all the linkages as
(c)
Interpretation: The polysaccharides amylopectin, amylose, cellulose, chitin, glycogen, heparin and hyaluronic acid have to be matched with the given glycosidic linkage characterization.
Concept introduction: Glycosidic linkage is a type of covalent bond that joins one carbohydrate to another carbohydrate leading to the formation of disaccharide, oligosaccharides and polysaccharides.
(c)
Answer to Problem 7.163EP
In the polysaccharide hyaluronic acid, both
Explanation of Solution
Amylose is an unbranched polysaccharide of starch. The glycosidic linkage present in amylose is
Amylopectin is a branched polysaccharide of starch. The glycosidic linkages present in amylopectin are
Cellulose provides the structural component of plant cell walls. The glycosidic linkage present in cellulose is
Chitin is an unbranchedN-acetyl-d-glucosamine polysaccharide. The glycosidic linkage present in chitin is
Heparin is a type of acidic polysaccharide. It contains the repeating unit of disaccharides. The glycosidic linkage present in heparin is
Hyaluronic acid is a type acidic polysaccharide that is, it has disaccharide as the repeating unit. The glycosidic linkages present in hyaluronic acid are
Glycogen is a starch polysaccharide. It stores glucose in human body and animals. The glycosidic linkage present in glycogen are both
Hence, the polysaccharidehyaluronic acid have both
(d)
Interpretation: The polysaccharides amylopectin, amylose, cellulose, chitin, glycogen, heparin and hyaluronic acid have to be matched with the given glycosidic linkage characterization.
Concept introduction: Glycosidic linkage is a type of covalent bond that joins one carbohydrate to another carbohydrate leading to the formation of disaccharide, oligosaccharides and polysaccharides.
(d)
Answer to Problem 7.163EP
In the polysaccharides heparin and amylose, all the glycosidic linkages are
Explanation of Solution
Amylose is an unbranched polysaccharide of starch. The glycosidic linkage present in amylose is
Amylopectin is a branched polysaccharide of starch. The glycosidic linkages present in amylopectin are
Cellulose provides the structural component of plant cell walls. The glycosidic linkage present in cellulose is
Chitin is an unbranchedN-acetyl-d-glucosamine polysaccharide. The glycosidic linkage present in chitin is
Heparin is a type of acidic polysaccharide. It contains the repeating unit of disaccharides. The glycosidic linkage present in heparin is
Hyaluronic acid is a type acidic polysaccharide that is, it has disaccharide as the repeating unit. The glycosidic linkages present in hyaluronic acid are
Glycogen is a starch polysaccharide. It stores glucose in human body and animals. The glycosidic linkage present in glycogen are both
Hence, the polysaccharides amylose and heparin have all the
Want to see more full solutions like this?
Chapter 7 Solutions
Organic And Biological Chemistry
- Zeolites: environmental applications.arrow_forward" is The structure of the bicarbonate (hydrogen carbonate) ion, HCO3-, HCO3 best described as a hybrid of several contributing resonance forms, two of which are shown here. HO :0: :Ö: HO + Bicarbonate is crucial for the control of body pH (for example, blood pH: 7.4). A more self-indulgent use is in baking soda, where it serves as a source of CO2 CO₂ 2 gas, which gives bread and pastry their fluffy constituency. (i) Draw at least one additional resonance form. = (ii) Using curved "electron-pushing" arrows, show how these Lewis structures may be interconverted by movement of electron pairs. (iii) Determine which form or forms will be the major contributor(s) to the real structure of bicarbonate, explaining your answer on the basis of the criteria in Section 1-5.arrow_forwardWhich of these is the best use of a volumetric flask? measuring how much liquid it contains delivering a precise amount of liquid to another container holding solutions making solutions of precise concentrationarrow_forward
- You're competing on a Great British television game show, and you need to bake a cake. The quantity for each ingredient is given in grams, but you haven't been given a kitchen scale. Which of these properties would correlate with the mass of a baking ingredient like eggs or milk? Check all that apply. depth of color viscosity volume densityarrow_forwardDraw a Lewis structure for each of the following species. Again, assign charges where appropriate. a. H-H¯ b. CH3-CH3 c. CH3+CH3 d. CH3 CH3 e. CH3NH3+CH3NH3 f. CH30-CH3O¯ g. CH2CH2 - h. HC2-(HCC) HC2 (HCC) i. H202×(HOOH) H₂O₂ (HOOH) Nortonarrow_forwardIs molecule 6 an enantiomer?arrow_forward
- Show work. Don't give Ai generated solutionarrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 ----||| Molecule 4 Molecule 5 Molecule 6 none of the above mm..arrow_forwardShow work. don't give Ai generated solutionarrow_forward
- Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 Molecule 3 ----||| Molecule 4 Molecule 5 Molecule 6 none of the above mm..arrow_forwardUse the vapor-liquid equilibrium data at 1.0 atm. for methanol-water (Table 2-8 ) for the following: If the methanol vapor mole fraction is 0.600, what is the methanol liquid mole fraction? Is there an azeotrope in the methanol-water system at a pressure of 1.0 atmospheres? If water liquid mole fraction is 0.350, what is the water vapor mole fraction? What are the K values of methanol and of water at a methanol mole fraction in the liquid of 0.200? What is the relative volatility αM-W at a methanol mole fraction in the liquid of 0.200?arrow_forwardCheck the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. || |II***** Molecule 1 | Molecule 4 none of the above Molecule 2 Molecule 3 Х mm... C ---||| *** Molecule 5 Molecule 6arrow_forward
- Introduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry In FocusChemistryISBN:9781305084476Author:Tro, Nivaldo J., Neu, Don.Publisher:Cengage LearningGeneral, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningOrganic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,