Chemistry: The Molecular Science
5th Edition
ISBN: 9781285199047
Author: John W. Moore, Conrad L. Stanitski
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7, Problem 51QRT
Explain why water “beads up” on a freshly waxed car, but not on a dirty, unwaxed car.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Calculate the heat of sublimation of PI3[PI3(s)→PI3(g)].
The standard heat of formation of PI3(s) is -24.7 kJ/mol and the PI bond energy in this molecule is 184 kJ/mol. The standard heat of formation of P(g) is 334 kJ/mol and that of I2(g) is 62 kJ/mol. The I2 bond energy is 151 kJ/mol.
In a hydrogen molecule, the two hydrogen atoms are held together by a single bond with a bond energy of 436 kJ/mol of hydrogen. In
other words, to break the H-H bonds in one mole of molecular hydrogen requires the expenditure of 436 kJ of energy. Using the
balanced chemical equation for the formation of water from oxygen and hydrogen (shown above), and interpreting the stoichiometric
coefficients as mole amounts, how much energy must be expended in breaking the H-H bonds?
kJ
Rank the elements or compounds in the table below in decreasing order of their boiling points. That is, choose 1 next to the substance with the highest boiling
point, choose 2 next to the substance with the next highest boiling point, and so on.
chemical symbol,
substance
chemical formula
boiling point
or Lewis structure
A
СаО
|(Choose one) v
H
H
|
Н — С — О — С — Н
..
В
(Choose one)
H
H
C
CO
|(Choose one) ♥
H
H
Н — С
С — О — Н
|(Choose one) ♥
|
н н
- aC
Chapter 7 Solutions
Chemistry: The Molecular Science
Ch. 7.2 - Identify the electron-region geometry, the...Ch. 7.2 - Based on the discussion so far, identify a...Ch. 7.2 - Prob. 7.2PSPCh. 7.2 - Determine the electron-region geometry and the...Ch. 7.2 - Prob. 7.2CECh. 7.2 - Prob. 7.3ECh. 7.2 - Prob. 7.4PSPCh. 7.4 - Using hybridization and sigma and pi bonding,...Ch. 7.4 - Prob. 7.4CECh. 7.5 - Decide whether each molecule is polar and, if so,...
Ch. 7.5 - Prob. 7.5ECh. 7.6 - Prob. 7.8PSPCh. 7.6 - Prob. 7.7CECh. 7.6 - Prob. 7.9PSPCh. 7.7 - Prob. 7.8CECh. 7.7 - Prob. 7.9CECh. 7 - Write the Lewis structures and give the...Ch. 7 - The structural formula for the open-chain form of...Ch. 7 - Describe the VSEPR model. How is the model used to...Ch. 7 - What is the difference between the electron-region...Ch. 7 - Prob. 3QRTCh. 7 - Prob. 4QRTCh. 7 - If you have three electron regions around a...Ch. 7 - Prob. 6QRTCh. 7 - Prob. 7QRTCh. 7 - Prob. 8QRTCh. 7 - Prob. 9QRTCh. 7 - Prob. 10QRTCh. 7 - Prob. 11QRTCh. 7 - Prob. 12QRTCh. 7 - Prob. 13QRTCh. 7 - Prob. 14QRTCh. 7 - Prob. 15QRTCh. 7 - Prob. 16QRTCh. 7 - Write Lewis structures for XeOF2 and ClOF3. Use...Ch. 7 - Write Lewis structures for HCP and [IOF4]. Use...Ch. 7 - Prob. 19QRTCh. 7 - Prob. 20QRTCh. 7 - Explain why (I3)+ is bent, but (I3) is linear.Ch. 7 - Prob. 22QRTCh. 7 - Prob. 23QRTCh. 7 - Give approximate values for the indicated bond...Ch. 7 - Give approximate values for the indicated bond...Ch. 7 - Prob. 26QRTCh. 7 - Compare the FClF angles in ClF2+ and ClF2. From...Ch. 7 - Prob. 28QRTCh. 7 - Prob. 29QRTCh. 7 - Prob. 30QRTCh. 7 - Prob. 31QRTCh. 7 - Describe the geometry and hybridization of carbon...Ch. 7 - Describe the geometry and hybridization for each C...Ch. 7 - Describe the hybridization around the central atom...Ch. 7 - The hybridization of the two carbon atoms differs...Ch. 7 - The hybridization of the two nitrogen atoms...Ch. 7 - Identify the type of hybridization, approximate...Ch. 7 - Prob. 38QRTCh. 7 - Prob. 39QRTCh. 7 - Prob. 40QRTCh. 7 - Prob. 41QRTCh. 7 - Methylcyanoacrylate is the active ingredient in...Ch. 7 - Prob. 43QRTCh. 7 - Prob. 44QRTCh. 7 - Prob. 45QRTCh. 7 - Prob. 46QRTCh. 7 - Which of these molecules has a net dipole moment?...Ch. 7 - Prob. 48QRTCh. 7 - Use molecular structures and noncovalent...Ch. 7 - Prob. 50QRTCh. 7 - Explain why water “beads up” on a freshly waxed...Ch. 7 - Explain why water will not remove tar from your...Ch. 7 - Prob. 53QRTCh. 7 - Prob. 54QRTCh. 7 - Prob. 55QRTCh. 7 - Prob. 56QRTCh. 7 - The structural formula for vitamin C is Give a...Ch. 7 - Prob. 58QRTCh. 7 - Prob. 59QRTCh. 7 - Prob. 60QRTCh. 7 - Prob. 61QRTCh. 7 - Prob. 62QRTCh. 7 - Prob. 63QRTCh. 7 - Prob. 64QRTCh. 7 - Prob. 65QRTCh. 7 - Prob. 66QRTCh. 7 - Methylcyanoacrylate is the active ingredient in...Ch. 7 - Prob. 68QRTCh. 7 - Prob. 69QRTCh. 7 - Use Lewis structures and VSEPR theory to predict...Ch. 7 - In addition to CO, CO2, and C3O2, there is another...Ch. 7 - Prob. 72QRTCh. 7 - Prob. 73QRTCh. 7 - Prob. 74QRTCh. 7 - Prob. 75QRTCh. 7 - In the gas phase, positive and negative ions form...Ch. 7 - Prob. 77QRTCh. 7 - Prob. 78QRTCh. 7 - Prob. 79QRTCh. 7 - Prob. 80QRTCh. 7 - Prob. 81QRTCh. 7 - Prob. 82QRTCh. 7 - Prob. 83QRTCh. 7 - Prob. 84QRTCh. 7 - Prob. 85QRTCh. 7 - Prob. 86QRTCh. 7 - Prob. 87QRTCh. 7 - Prob. 88QRTCh. 7 - Prob. 89QRTCh. 7 - Prob. 90QRTCh. 7 - Prob. 91QRTCh. 7 - Prob. 92QRTCh. 7 - Prob. 93QRTCh. 7 - Prob. 94QRTCh. 7 - Which of these are examples of hydrogen bonding?Ch. 7 - Prob. 96QRTCh. 7 - Prob. 97QRTCh. 7 - Prob. 98QRTCh. 7 - Halothane, which had been used as an anesthetic,...Ch. 7 - Ketene, C2H2O, is a reactant for synthesizing...Ch. 7 - Gamma hydroxybutyric acid, GHB, infamous as a date...Ch. 7 - There are two compounds with the molecular formula...Ch. 7 - Piperine, the active ingredient in black pepper,...Ch. 7 - Prob. 105QRTCh. 7 - Two compounds have the molecular formula N3H3. One...Ch. 7 - Prob. 108QRTCh. 7 - Prob. 109QRTCh. 7 - Prob. 110QRTCh. 7 - Prob. 111QRTCh. 7 - Prob. 7.ACPCh. 7 - Prob. 7.BCPCh. 7 - Prob. 7.CCPCh. 7 - Prob. 7.DCP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- CH,OH The name carbohydrate comes from the fact that many simple sugars have chemical formulae that look like water has simply been added to carbon. (The suffix hydrate from the Greek word hydor ("water") means "compound formed by the addition of water.") OH The actual chemical structure of carbohydrates doesn't look anything like water molecules bonded to carbon atoms (see sketch at right). But it is nevertheless possible to chemically extract all the hydrogen and oxygen from many simple carbohydrates as water, leaving only carbon behind. If you search the Internet for "reaction of sulfuric acid and sugar" you will find some impressive videos of this. НО OH ОН The actual chemical Suppose you had (200. g) of ordinary table sugar, which chemists call sucrose, and which has the chemical formula C,,H,,0,. 22 structure of glucose. 12 Calculate the maximum mass of water you could theoretically extract. Be sure your answer has a unit symbol, and round it to 3 significant digits. x10 ?arrow_forwardExplain the term crystal radii?arrow_forward8) Fill in the blanks with the appropriate structures. Na,Cr,0, NH,OH.HCI H,SO, NaOAc heatarrow_forward
- Rank the elements or compounds in the table below in decreasing order of their boiling points. That is, choose 1 next to the substance with the highest boiling point, choose 2 next to the substance with the next highest boiling point, and so on. chemical symbol, substance chemical formula boiling point or Lewis structure H Н — С — Н - | A :N - О — Н (Choose one) | Н — С — Н H В Cr (Choose one) H H H | Н — С — С | C — О — С — н (Choose one) H H H D Ar (Choose one) :0 : :0 :arrow_forwardIf you knew thatEnergy required for evaporation of sodium =109 kJ/mol The energy required for evaporation of bromine =31 kJ /mol of the bond energy Br__Br =192 kJ /mol of the first cyanide energy of sodium= 496 kJ/mol The energy of the crystal lattice of NaBr= - 734 kJ The energy change of the reaction *Na(s)+1/2Br2(l)____NaBr(s)* equals = - 360 kJ/ mol Calculate Electronic affinity for bromine, the energy resulting from change Br(s)+e-___Br-(s)arrow_forwardThe melting and boiling points of sodium metal are much lower than those of sodium chloride. What does this difference reveal about the relative strengths of metallic bonds and ionic bonds?arrow_forward
- 1. Draw Lewis structures for ozone and for dioxygen. Using the data given below, qualitatively compare the bond enthalpies, bond orders, and bond lengths of these two compounds. O₂ (g) 20 (g) AH" = +498 kJ O(g) + O₂(g) →O, (g) AH-105 kJarrow_forward16). Using the thermochemical data below calculate the lattice energy for the formation of Na₂O. Na(s) → Na(g) 107.3 kJ/mol Na(g) → Na (g) + 1 e - 495.9 kJ/mol -418 kJ/mol 249.1 kJ/mol -141 kJ/mol -1484.5 kJ/mol 2 Na(s) + O₂(g) →→→ Na₂O(s) 1/2 O₂(g) → 0(g) O(g) + 1 e→O(g) O(g) +1e0²(g)arrow_forwardCarbon dioxide (CO2) and methane (CH4) exists as gaseous substances at room temperature. But dry ice is solid while liquefied natural gas (LNG) is liquid. Discuss the bonding pattern among the molecules of dry ice and LNG. cite references usedarrow_forward
- hat is meant by the term driving forces? Why are mailer spread and energy spread considered to be driving forces?arrow_forwardCalculate the lattice enthalpy for RbC1. You will need the following information: Species AfH°, kJ/mol Rb(g) RbCl(s) Cl(g) 80.9 - 435.4 121.3 Enthalpy of ionization for Rb(g) is 403.0 kJ/mol; electron attachment enthalpy for Cl(g) is −349.0 kJ/mol. Lattice enthalpy = kJ/molarrow_forwardRank the elements or compounds in the table below in decreasing order of their boiling points. That is, choose 1 next to the substance with the highest boiling point, choose 2 next to the substance with the next highest boiling point, and so on. substance B C O chemical symbol, chemical formula or Lewis structure H I H :O: H ||| H-CICIC-H ||| HHH CaBc₂ CH, -N-CH, I CH, H 10: H-C-C-N-CH, Bri CH, boiling point (Choose one) (Choose one) (Choose one) (Choose one)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
Introductory Chemistry: A Foundation
Chemistry
ISBN:9781337399425
Author:Steven S. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Unit Cell Chemistry Simple Cubic, Body Centered Cubic, Face Centered Cubic Crystal Lattice Structu; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=HCWwRh5CXYU;License: Standard YouTube License, CC-BY