Concept explainers
(a)
Interpretation:
Hybridisation of single-bonded nitrogen atoms has to be given.
(b)
Interpretation:
Hybridisation of double-bonded sulphur atoms has to be given.
(c)
Interpretation:
Hybridisation of double-bonded nitrogen atoms has to be given.
(d)
Interpretation:
Number of sigma bonds and number of pi bonds in the molecule have to be given.
Concept Introduction:
Sigma (σ) bonds are the bonds in which shared hybrid orbital’s electron density are concentrated along the internuclear axis.
Pi (π) bonds are the bonds in which shared un-hybridized orbital’s (p, d, etc) electron density are concentrated in above and below of the plane of the molecule.
(e)
Interpretation:
The position of sigma and pi bonds in the molecule has to be shown.
(f)
Interpretation:
Lewis structure for another resonance hybrid structure has to be shown.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Chemistry: The Molecular Science
- It is possible to write a simple Lewis structure for the SO42- ion, involving only single bonds, which follows the octet rule. However, Linus Pauling and others have suggested an alternative structure, involving double bonds, in which the sulfur atom is surrounded by six electron pairs. (a) Draw the two Lewis structures. (b) What geometries are predicted for the two structures? (c) What is the hybridization of sulfur in each case? (d) What are the formal charges of the atoms in the two structures?arrow_forwardA useful solvent that will dissolve salts as well as organic compounds is the compound acetonitrile, H3CCN. It is present in paint strippers.(a) Write the Lewis structure for acetonitrile, and indicate the direction of the dipole moment in the molecule.(b) Identify the hybrid orbitals used by the carbon atoms in the molecule to form σ bonds.(c) Describe the atomic orbitals that form the π bonds in the molecule. Note that it is not necessary to hybridize the nitrogen atom.arrow_forward7. Nitrogen is the central atom in each of the species given. (a) Draw the Lewis electron-dot structure for each of the species. + NO₂ NO₂ NO₂ (b) List the species in order of increasing bond angle. Justify your answer. (c) For NO₂ and NO₂, give the hybridization of the nitrogen atom in it. (d) Identify the only one of the species that dimerizes and explain what causes it to do so.arrow_forward
- For each of the following molecule: (i) draw the correct Lewis structure; (ii) determine the molecular geometry and the type of hybridization on the central atom, and (iii) predict whether the molecule is polar or nonpolar. (a) BrCl5arrow_forwardPropylene, C3H6, is a gas that is used to form the importantpolymer called polypropylene. Its Lewis structure is given. (a) What is the total number of valence electrons in the propylenemolecule? (b) How many valence electrons are usedto make σ bonds in the molecule? (c) How many valenceelectrons are used to make π bonds in the molecule? (d) Howmany valence electrons remain in nonbonding pairs in themolecule? (e) What is the hybridization at each carbon atomin the molecule?arrow_forwardH2CO molecules (a) use orbital hybridization theory to determine the molecular shape of h2co. (b) what bonds are formed between the c and o atoms in formaldehyde molecules?arrow_forward
- . Assume that the third-period element phosphorus forms a diatomic molecule, P2, in an analogous way as nitrogen does to form N2. (a) Write the electronic configuration for P2. Use [Ne2] to represent the electron configuration for the first two periods. (b) Calculate its bond order. (c) What are its magnetic properties (diamagnetic or paramagnetic)?arrow_forwardAzo dyes are organic dyes that are used for many applications,such as the coloring of fabrics. Many azo dyes arederivatives of the organic substance azobenzene, C12H10N2.A closely related substance is hydrazobenzene, C12H12N2.The Lewis structures of these two substances are given (Recall the shorthand notation used for benzene.)(a) What is the hybridization at the N atom in each of thesubstances? (b) How many unhybridized atomic orbitalsare there on the N and the C atoms in each of the substances?(c) Predict the N—N—C angles in each of thesubstances. (d) Azobenzene is said to have greater delocalizationof its π electrons than hydrazobenzene. Discussthis statement in light of your answers to (a) and (b). (e) Allthe atoms of azobenzene lie in one plane, whereas thoseof hydrazobenzene do not. Is this observation consistentwith the statement in part (d)? (f) Azobenzene is an intensered-orange color, whereas hydrazobenzene is nearly colorless.Which molecule would be a better one to use in…arrow_forward(a) Methane (CH4) and the perchlorate ion (ClO4- ) are bothdescribed as tetrahedral. What does this indicate about theirbond angles? (b) The NH3 molecule is trigonal pyramidal, while BF3 is trigonal planar. Which of these molecules is flat?arrow_forward
- Formaldehyde (H2CO) molecules (H: 1s', C: 1s²2s²2p?, and O: 1s²2s²2p*) (a) Use Orbital Hybridization theory to determine the molecular shape of H2CO. (b) What bonds are formed between the C and O atoms in formaldehyde molecules? (arrow_forwardThe Lewis structure of BH2Cl (a) Is the molecule polar or nonpolar? (b) What is the hybridization of the carbon atom? (c) What is the geometric shape of the molecule?arrow_forwardThe lactic acid molecule, CH3CH(OH)COOH, gives sourmilk its unpleasant, sour taste. (a) Draw the Lewis structurefor the molecule, assuming that carbon always forms fourbonds in its stable compounds. (b) How many π and howmany σ bonds are in the molecule? (c) Which CO bond isshortest in the molecule? (d) What is the hybridization ofatomic orbitals around the carbon atom associated withthat short bond? (e) What are the approximate bond anglesaround each carbon atom in the molecule?arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning