Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 16CQ
To determine
The disadvantage of dispersion-strengthened which result in reaction of matrix and dispersion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
16) Which of the following mechanical
properties can be measured / calculated
from this tensile stress-strain graph of a
generic metal alloy? (pick all that apply)
a. Poisson's ratio
b. Elastic modulus
C.
Shear modulus
d. Flexural modulus
e. Fracture toughness
17) Interstitial sites in a FCC lattice are called
a.
Rhombohedral and cubic
b. Cubic and hexagonal
C.
Monoclinic and triclinic
Stress (MPa)
2000
MPa
2000
1000
1000
0.000
0.005 0.010
0.015
Strain
0.000
0.020
0.040
Strain
0.060
0.080
d. Tetrahedral and octahedral
e. Heterogeneous and homogeneous
18) Traditional photovoltaics rely on which structural feature to separate charge carriers?
a. The p-n junction
b. The grain boundaries
C.
The twin boundaries
d. The electron-hole pair
e. The band gap
19) The process by which lithium ions move in to and out of graphite in a lithium-ion battery is
called
a.
Intercalation
b. Stacking
C.
Precipitation
d. Phase combination
e.
lonization
20) A polymer obtained by the polymerization of two types…
In an engineering application, the material is a strip of iron with a fixed crystallographic structure subject to a tensile load during operation. The part
failed (yielded) during operation and needs to be replaced with a component with better properties. You are told that two other iron strips had failed
at yield stresses of 110 and 120 MPa, with grain sizes of 30 microns and 25 microns respectively. The current strip has a grain size of 20 microns. The
diameter of the rod is 1 mm and the load applied is 100 N. What is the yield stress of the new part C and would you recommend it for operation?
Select one:
Oa. 133.5 MPa, yes
O b.
OC.
Od
Oe.
120.5 MPa, no
129.5, yes
140.5, no
123.5 MPa, yes
6)
Chapter 7 Solutions
Materials Science And Engineering Properties
Ch. 7 - Prob. 1CQCh. 7 - Prob. 2CQCh. 7 - Prob. 3CQCh. 7 - Prob. 4CQCh. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - Prob. 7CQCh. 7 - Prob. 8CQCh. 7 - Prob. 9CQCh. 7 - Prob. 10CQ
Ch. 7 - Prob. 11CQCh. 7 - Prob. 12CQCh. 7 - Prob. 13CQCh. 7 - Prob. 14CQCh. 7 - Prob. 15CQCh. 7 - Prob. 16CQCh. 7 - Prob. 17CQCh. 7 - Prob. 18CQCh. 7 - Prob. 19CQCh. 7 - Prob. 20CQCh. 7 - Prob. 21CQCh. 7 - Prob. 22CQCh. 7 - Prob. 23CQCh. 7 - Prob. 24CQCh. 7 - Prob. 25CQCh. 7 - Prob. 26CQCh. 7 - Prob. 27CQCh. 7 - Prob. 28CQCh. 7 - Prob. 29CQCh. 7 - Prob. 30CQCh. 7 - Prob. 31CQCh. 7 - Prob. 32CQCh. 7 - Prob. 33CQCh. 7 - Prob. 34CQCh. 7 - Prob. 35CQCh. 7 - Prob. 36CQCh. 7 - Prob. 37CQCh. 7 - Prob. 38CQCh. 7 - Prob. 39CQCh. 7 - Prob. 40CQCh. 7 - Prob. 41CQCh. 7 - Prob. 42CQCh. 7 - Prob. 43CQCh. 7 - Prob. 44CQCh. 7 - Prob. 45CQCh. 7 - Prob. 46CQCh. 7 - Prob. 47CQCh. 7 - Prob. 48CQCh. 7 - Prob. 49CQCh. 7 - Prob. 50CQCh. 7 - Prob. 51CQCh. 7 - Prob. 52CQCh. 7 - Prob. 1DRQCh. 7 - Prob. 2DRQCh. 7 - Prob. 3DRQCh. 7 - Prob. 4DRQCh. 7 - Prob. 5DRQCh. 7 - Prob. 6DRQCh. 7 - Prob. 7DRQCh. 7 - Prob. 8DRQCh. 7 - Prob. 1ETSQCh. 7 - Prob. 2ETSQCh. 7 - Prob. 3ETSQCh. 7 - Prob. 4ETSQCh. 7 - Prob. 5ETSQCh. 7 - Prob. 6ETSQCh. 7 - Prob. 7ETSQCh. 7 - Prob. 8ETSQCh. 7 - Prob. 9ETSQCh. 7 - Prob. 7.1PCh. 7 - Prob. 7.2PCh. 7 - Prob. 7.3PCh. 7 - Prob. 7.4PCh. 7 - Prob. 7.5PCh. 7 - Prob. 7.6PCh. 7 - Prob. 7.7PCh. 7 - Prob. 7.8PCh. 7 - Prob. 7.9PCh. 7 - Prob. 7.10PCh. 7 - Prob. 7.11PCh. 7 - Prob. 7.13P
Knowledge Booster
Similar questions
- 3.What is a dislocation? List five more microscopic defects in bulk materials. Which of the following properties are most sensitive to dislocation structures in materials? a. Young's modulus b. Yield strength c. Conductivity d. Transparencyarrow_forwardNarrow bars of aluminum are bonded to the two sides of a thick steel plate as shown. Initially, at T₁ = 70°F, all stresses are zero. Knowing that the temperature will be slowly raised to T₂ and then reduced to T₁, determine (a) the highest temperature T₂ that does not result in residual stresses, (b) the temperature T₂ that will result in a residual stress in the aluminum equal to 58 ksi. Assume aa = 12.8 x 10-6/°F for the aluminum and a = 6.5 × 10-6/°F for the steel. Further assume that the aluminum is elastoplastic with E = 10.9 × 106 psi and ay = 58 ksi. (Hint: Neglect the small stresses in the plate.) Fig. P2.121arrow_forward10)arrow_forward
- If there is to be extensive replacement in a substitutional solid solutions"SSS", the atoms must be nearly the same size. Select one: O True O False The load-deformation depends on the rate of loading in viscoelastic Materials.arrow_forwardSolid Mechanicsarrow_forwardAn iron specimen is plastically deformed in shear by 1%, and it has u dislocation density of 1 10 14 m/ m 3 Assume that the dislocation density did not change in the 1% strain of thisspecimen, the Burger's vector (b) is a 2 [1 1 1] the slip plane is (110). the shear stress isapplied to the (110) plane, and the lattice parameter of the BCC iron is 0.286 nm. Calculate the magnitude of the Burger's vector for these dislocations in iron. Calculate the average distance moved by the mobile dislocations as a result of the 1% shear strain.arrow_forward
- Qus :arrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; α=α=12.5 x 10-6/°F] bar with a width of 2.5 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; α=α=9.6 x 10-6/°F] bar with a width of 1.7 in. and a thickness of 0.75 in. The supports at A and C are rigid. Assume h1=2.5 in., h2=1.7 in., L1=31 in., L2=46 in., and Δ=Δ= 0.04 in. (A) Determine the lowest temperature, Tcontact, at which the two bars contact each other. (B) Find a geometry-of-deformation relationship for the case in which the gap is closed. Express this relationship by entering the sum δ1+δ2, where δ1 is the axial deflection of Bar (1), and δ2 is the axial deflection of Bar (2). δ1+δ2= _____in. (C) Find the force in the Bar (1), F1, and the force in Bar (2), F2, at a temperature of 225oF. By convention, a tension force is positive and a compression force is negative. IN KIPS (D) Find σ1 and σ2,…arrow_forwardAt a temperature of 60°F, a 0.02-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; α=α=12.5 x 10-6/°F] bar with a width of 2.8 in. and a thickness of 0.85 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; α=α=9.6 x 10-6/°F] bar with a width of 1.6 in. and a thickness of 0.85 in. The supports at A and C are rigid. Assume h1=2.8 in., h2=1.6 in., L1=26 in., L2=40 in., and Δ=Δ= 0.02 in. Determine(a) the lowest temperature at which the two bars contact each other.(b) the normal stress in the two bars at a temperature of 225°F.(c) the normal strain in the two bars at 225°F.(d) the change in width of the aluminum bar at a temperature of 225°F.arrow_forward
- With the help of a diagram, contrast the stress-strain relationship with respect to ceramic and metalsWith the help of a diagram, contrast the stress-strain relationship with respect to ceramic and metalsarrow_forwardAt a temperature of 60°F, a 0.04-in. gap exists between the ends of the two bars shown. Bar (1) is an aluminum alloy [E = 10,000 ksi; v = 0.32; a = 13.4 x 10-6/°F] bar with a width of 3 in. and a thickness of 0.75 in. Bar (2) is a stainless steel [E = 28,000 ksi; v = 0.12; a = 10.1 x 10-6/°F] bar with a width of 2 in. and a thickness of 0.75 in. The supports at A and Care rigid. Determine the lowest temperature at which the two bars contact each other. (1) ↑ 3 in. 32 in. O 75.9°F O 146.5°F O 105.8°F O 122.3°F O 111.3°F 2 in. (2) 44 in. -0.04-in. gaparrow_forwardA copper rod is deformed using a uniaxial tensile force of 16000 N. Deformation continues until sufficient strain hardening has occurred such that the applied force is too small to allow further deformation. After deformation, the rod has a diameter of 0.01 m and a length of 1.5 m. Assume that copper follows the strain hardening lawwith K of 310 MPa and n=0.54 Please calculate the true strain after the deformation ?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning