Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 3CQ
To determine
The reason for strain hardening.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
(a)
Explain the phenomenon of strain hardening.
(a)
Explain the phenomenon of strain hardening of ductile material.
Draw a tensile stress-strain curve for a typical semi-crystalline polymer such as LLDPE, and define the three main regions on the curve.
Chapter 7 Solutions
Materials Science And Engineering Properties
Ch. 7 - Prob. 1CQCh. 7 - Prob. 2CQCh. 7 - Prob. 3CQCh. 7 - Prob. 4CQCh. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - Prob. 7CQCh. 7 - Prob. 8CQCh. 7 - Prob. 9CQCh. 7 - Prob. 10CQ
Ch. 7 - Prob. 11CQCh. 7 - Prob. 12CQCh. 7 - Prob. 13CQCh. 7 - Prob. 14CQCh. 7 - Prob. 15CQCh. 7 - Prob. 16CQCh. 7 - Prob. 17CQCh. 7 - Prob. 18CQCh. 7 - Prob. 19CQCh. 7 - Prob. 20CQCh. 7 - Prob. 21CQCh. 7 - Prob. 22CQCh. 7 - Prob. 23CQCh. 7 - Prob. 24CQCh. 7 - Prob. 25CQCh. 7 - Prob. 26CQCh. 7 - Prob. 27CQCh. 7 - Prob. 28CQCh. 7 - Prob. 29CQCh. 7 - Prob. 30CQCh. 7 - Prob. 31CQCh. 7 - Prob. 32CQCh. 7 - Prob. 33CQCh. 7 - Prob. 34CQCh. 7 - Prob. 35CQCh. 7 - Prob. 36CQCh. 7 - Prob. 37CQCh. 7 - Prob. 38CQCh. 7 - Prob. 39CQCh. 7 - Prob. 40CQCh. 7 - Prob. 41CQCh. 7 - Prob. 42CQCh. 7 - Prob. 43CQCh. 7 - Prob. 44CQCh. 7 - Prob. 45CQCh. 7 - Prob. 46CQCh. 7 - Prob. 47CQCh. 7 - Prob. 48CQCh. 7 - Prob. 49CQCh. 7 - Prob. 50CQCh. 7 - Prob. 51CQCh. 7 - Prob. 52CQCh. 7 - Prob. 1DRQCh. 7 - Prob. 2DRQCh. 7 - Prob. 3DRQCh. 7 - Prob. 4DRQCh. 7 - Prob. 5DRQCh. 7 - Prob. 6DRQCh. 7 - Prob. 7DRQCh. 7 - Prob. 8DRQCh. 7 - Prob. 1ETSQCh. 7 - Prob. 2ETSQCh. 7 - Prob. 3ETSQCh. 7 - Prob. 4ETSQCh. 7 - Prob. 5ETSQCh. 7 - Prob. 6ETSQCh. 7 - Prob. 7ETSQCh. 7 - Prob. 8ETSQCh. 7 - Prob. 9ETSQCh. 7 - Prob. 7.1PCh. 7 - Prob. 7.2PCh. 7 - Prob. 7.3PCh. 7 - Prob. 7.4PCh. 7 - Prob. 7.5PCh. 7 - Prob. 7.6PCh. 7 - Prob. 7.7PCh. 7 - Prob. 7.8PCh. 7 - Prob. 7.9PCh. 7 - Prob. 7.10PCh. 7 - Prob. 7.11PCh. 7 - Prob. 7.13P
Knowledge Booster
Similar questions
- Given your understanding of what initiates and controls failure in materials, which of the following will increase the failure strength or lifetime of a test piece or component and why? a. Decreasing the difference between the maximum and minimum stress values, as this effects the stress concentration factor b. Decreasing the temperature below the brittle-ductile transition temperature, to make it harder C. Polishing to reduce surface defects Od. Increasing its volume, to give a larger cross sectional area Oe. Increasing the grain size so there are less grain boundaries to initiate failurearrow_forwardThe assembly shown consists of an aluminum shell (E,= 70 GPa, a, = 23.6 × 10-6rC) fully bonded to a steel core (Es = 200 GPa, as = 11.7 x 10-6rC) and the assembly is unstressed at a temperature of 20°C. Considering only axial deformations, determine the stress in the aluminum when the temperature reaches 215°C. 200 mm 20 mm Aluminum shell Steel 50 mm core The stress in the aluminum is MPa.arrow_forwardAt the ultimate tensile strength. (a) The true stress is at its maximum. (b) The specimen always fractures. (c) The maximum load-carrying capacity is experienced. (d) The material yields.arrow_forward
- A laminated [0/90/0/90]s graphite/epoxy beam is 1 mm thick, is 20 mm wide, and has 0.125 mm thick plies. The lamina properties are E1 = 180 GPa, E2 = 10 GPa, ν12 = 0.28, G12 = 7 GPa Xt = 1700 MPa, Xc = 1400 MPa, Yt = 40 MPa, Yc = 230 MPa (a) Determine the flexural modulus of the beam (b) How could the flexural modulus be improved without changing the ply materials, the number of plies, or the ply orientations? (c) Using the Maximum Stress Criterion for each ply, determine the magnitude of the maximum allowable bending moment that the beam can withstand. Which ply fails first?arrow_forwardA copper rod of cross-sectional area 0.500 cm2 and length 1.00 m is elongated by 2.00 * 10-2 mm, and a steel rod of the same crosssectional area but 0.100 m in length is elongated by 2.00 * 10-3 mm . (a) Which rod has greater tensile strain? (i) The copper rod; (ii) the steel rod; (iii) the strain is the same for both. (b) Which rod is under greater tensile stress? (i) The copper rod; (ii) the steel rod; (iii) the stress is the same for both.arrow_forwardThis is a mechanical property of engineering materials that exhibits a slow deformation under long term sustained loads.arrow_forward
- A steel plate is subjected to pure shear. The steel has a yield strength of 250 MPa. How muchshear stress can the plate resist before it yields according to the Von-mises yield criterion.arrow_forwardMechanical Properties-Metals For a bronze alloy, the stress at which plastic deformation begins is 295 MPa and the modulus of elasticity (E) is 108 GPa. (a) What is the maximum load (Fy) that can be applied to a specimen having a cross-sectional area of 314 mm2 without plastic deformation? (b) If the original specimen length is 142 mm, what is the maximum length to which it may be stretched without causing plastic deformation?arrow_forwardWhat are the advantages and disadvantages of hot deformation as compared to cold deformationarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning