Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 32CQ
To determine
The strength increased by decreasing the size of cracks and pores.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A steel specimen is tested in tension. The specimen is 50 mm wide by 25 mm thick in the test region.The specimen yields at a load of 160 kN and fractures at 215 kN. Determine the tensile stress at fracture.
A steel specimen is tested in tension. The specimen is 1.0 in. wide by 0.25 in. thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of 12.5 kips and fractured at 17.5 kips.a. Determine the tensile stresses at yield and at fracture.b. Estimate how much increase in length would occur at 60% of the yield stress in a 2-in. gauge length.
A steel specimen is tested in tension. The specimen is 1.0 in. wide by 0.25 in. thick in the test region. By monitoring the load dial of the testing machine, it was found that the specimen yielded at a load of
12.5 kips and fractured at 17.5 kips.
a. Determine the tensile stresses at yield and at fracture.
b. Estimate how much increase in length would occur at 60% of the yield stress in a 2-in. gauge length.
Step-by-step solution:
Step 1 of 4
Given that:
Width of the specimen, b = 1 in
Thickness of the specimen, t = 0.25 in
Yield load on the specimen, Py = 12.5 kips
Fracture load on the specimen, Pf = 17.5 kips
Gauge length, L = 2 in
Percentage of yield stress = 60%
Chapter 7 Solutions
Materials Science And Engineering Properties
Ch. 7 - Prob. 1CQCh. 7 - Prob. 2CQCh. 7 - Prob. 3CQCh. 7 - Prob. 4CQCh. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - Prob. 7CQCh. 7 - Prob. 8CQCh. 7 - Prob. 9CQCh. 7 - Prob. 10CQ
Ch. 7 - Prob. 11CQCh. 7 - Prob. 12CQCh. 7 - Prob. 13CQCh. 7 - Prob. 14CQCh. 7 - Prob. 15CQCh. 7 - Prob. 16CQCh. 7 - Prob. 17CQCh. 7 - Prob. 18CQCh. 7 - Prob. 19CQCh. 7 - Prob. 20CQCh. 7 - Prob. 21CQCh. 7 - Prob. 22CQCh. 7 - Prob. 23CQCh. 7 - Prob. 24CQCh. 7 - Prob. 25CQCh. 7 - Prob. 26CQCh. 7 - Prob. 27CQCh. 7 - Prob. 28CQCh. 7 - Prob. 29CQCh. 7 - Prob. 30CQCh. 7 - Prob. 31CQCh. 7 - Prob. 32CQCh. 7 - Prob. 33CQCh. 7 - Prob. 34CQCh. 7 - Prob. 35CQCh. 7 - Prob. 36CQCh. 7 - Prob. 37CQCh. 7 - Prob. 38CQCh. 7 - Prob. 39CQCh. 7 - Prob. 40CQCh. 7 - Prob. 41CQCh. 7 - Prob. 42CQCh. 7 - Prob. 43CQCh. 7 - Prob. 44CQCh. 7 - Prob. 45CQCh. 7 - Prob. 46CQCh. 7 - Prob. 47CQCh. 7 - Prob. 48CQCh. 7 - Prob. 49CQCh. 7 - Prob. 50CQCh. 7 - Prob. 51CQCh. 7 - Prob. 52CQCh. 7 - Prob. 1DRQCh. 7 - Prob. 2DRQCh. 7 - Prob. 3DRQCh. 7 - Prob. 4DRQCh. 7 - Prob. 5DRQCh. 7 - Prob. 6DRQCh. 7 - Prob. 7DRQCh. 7 - Prob. 8DRQCh. 7 - Prob. 1ETSQCh. 7 - Prob. 2ETSQCh. 7 - Prob. 3ETSQCh. 7 - Prob. 4ETSQCh. 7 - Prob. 5ETSQCh. 7 - Prob. 6ETSQCh. 7 - Prob. 7ETSQCh. 7 - Prob. 8ETSQCh. 7 - Prob. 9ETSQCh. 7 - Prob. 7.1PCh. 7 - Prob. 7.2PCh. 7 - Prob. 7.3PCh. 7 - Prob. 7.4PCh. 7 - Prob. 7.5PCh. 7 - Prob. 7.6PCh. 7 - Prob. 7.7PCh. 7 - Prob. 7.8PCh. 7 - Prob. 7.9PCh. 7 - Prob. 7.10PCh. 7 - Prob. 7.11PCh. 7 - Prob. 7.13P
Knowledge Booster
Similar questions
- 2. Please estimate the number of cycles to failure of a steel specimen under tensile fatigue loading with the following parameters. The R ratio is 3, mean stress 200 MPa, yield strength 450 MPa, ultimate tensile strength 560 MPa, Young’s modulus 200 GPa, KIC = 140 MPa . Assume the initial crack length is 0.1 mm.arrow_forwardGiven your understanding of what initiates and controls failure in materials, which of the following will increase the failure strength or lifetime of a test piece or component and why? a. Decreasing the difference between the maximum and minimum stress values, as this effects the stress concentration factor b. Decreasing the temperature below the brittle-ductile transition temperature, to make it harder C. Polishing to reduce surface defects Od. Increasing its volume, to give a larger cross sectional area Oe. Increasing the grain size so there are less grain boundaries to initiate failurearrow_forwardI need the answer as soon as possiblearrow_forward
- 2- What is the largest size (mm) internal through crack that a thick plate of aluminium alloy 7075-T651 can support at an applied stress of (a) three-quarters of the yield strength and (b) one-half of the yield strength? Assume Y = 1. for 7075-T651, KỊC = 24.2 MPa ym and oYS = 495 MPa.arrow_forward1. The most important mechanical properties of brittle materials is Tensile strength compressive strength O rigidity hardness Creeparrow_forwardFor a specimen of a steel alloy with a plane strain fracture toughness of 80 MPa√m, fracture results at a stress of 510 MPa when the maximum (or critical) internal crack length is 6 mm. For the same alloy, will fracture occur at a stress level of 380 MPa when the maximum internal crack is 9.0 mm? Why or why not? Select the most appropriate answer based on your calculation. Select one: a. It will not fracture b. Not enough information c. It will fracturearrow_forward
- A tension test for a steel alloy results in the stress-strain diagram shown in Figure. Calculate the modulus of elasticity and the yield strength based on a 0.2% offset. Identify the graph the ultimate stress and fracture stress.arrow_forwardcompare the effect of presence of a notch on ductile and brittle materials in terms of fracture behaviourarrow_forwardEngineering strain of a mild steel sample is recorded as 0.100%. The true strain is 1. 2. 3. 4. 0.010% 0.055% 0.099% 0.101%arrow_forward
- Is it possible to conduct a valid plane strain fracture toughness test for a CrMoV steel alloy under the following conditions: KIC = 53 MPa√m , σys = 620 MPa, W = 6 cm, and plate thickness B = 2.5 cm?arrow_forward(b) The difference between the theoretical and measured fracture strengths of brittle materials is explained by the presence of small flaws or cracks. In terms of these pre-existing flaws or cracks, briefly describe the occurring phenomena when a brittle material fractures in tension. (i) (ii) Explain why ductile materials do not fail in a brittle manner even though they have small flaws and crack present. If so, explain the process of ductile fracture of the materials.arrow_forwardA ceramic part is used under a complete reverse cyclic stress with a stress amplitude (S) of 250 MPa. The yield strength and fracture toughness of materials is 550 MPa and 12.5 MPa*sqrt(m), respectively. Y is 1.4. What is the critical surface crack length?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Materials Science And Engineering PropertiesCivil EngineeringISBN:9781111988609Author:Charles GilmorePublisher:Cengage Learning
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning