Materials Science And Engineering Properties
Materials Science And Engineering Properties
1st Edition
ISBN: 9781111988609
Author: Charles Gilmore
Publisher: Cengage Learning
Question
Book Icon
Chapter 7, Problem 1CQ
To determine

The reason for plastic strain in metals at temperature below half of melting temperature.

Expert Solution & Answer
Check Mark

Answer to Problem 1CQ

The motion of dislocation is the main reason for plastic strain in metals at temperature below half of melting temperature.

Explanation of Solution

Plastic strain is the strain obtained in material when the material is stretched beyond its elastic limit. Plastic strain is the permanent strain as material do not regains its original shape after the removal of force. The unloading curve on stress-strain curve follows a very different path from its original one.

The defects present in crystalline metals are the main reason for the plastic strain in them. The dislocations formed in metals during the solidification are one of the defects in it. In crystalline metals the motion of dislocation is the main reason for plastic strain in metals at temperature below half of melting temperature.

Conclusion:

Thus, motion of dislocation is the main reason for plastic strain in metals at temperature below half of melting temperature.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(b) For the cantilever beam shown in Fig. 3, a roller support has been added at mid-span. Given that El is constant, use the force method to determine the following: (i) The reaction force at support C. (ii) The reaction forces at fixed support A. (15 marks) C 25 kN B 2 m 2 m Fig. 3: A propped cantilever beam [Q2=25 marks]
You are working on a 1-km highway extension project that requires the construction of a 4-m tall soil embankment with a top width of 15-m and 2H:1V slopes. A borrow-pit (i.e., a place where soils are excavated, to then be placed elsewhere for construction projects) has been identified with e = 0.74, emax = 0.9, emin = 0.5. To avoid excessive road deformations, the soil will be compacted to a relative density of DR = 90% when placed in the embankment. Your boss estimates that extracting 100,000 m^3 of material from the borrow-pit should be enough for this project. Is your boss correct, or is more material than that needed? To decide, answer these questions: a) What volume of soil, as placed, is required to build the embankment? [Tip: draw the embankment] b) What is the void ratio of the material when placed in the embankment? c) What is the relative density of the material in the borrow-pit? d) When soil is extracted from the borrow-pit and then compacted it the embankment, how do…
There are 20 cars traveling at constant speeds on a 1 mile long ring track and the cars can pass each other freely. On the track 25% of the cars are traveling at 20 mph, 50% of the cars are traveling 10 mph, and the remaining 25% of the cars are traveling at an unknown speed. It was known that the space mean speed of all the cars on the track is 20 mph. (a) What is the speed that the remaining 25% of cars are traveling at? (b) If an observer standing on the side of the track counted the number and measured the speed of all cars that passed her for one hour, what is the time-mean speed of all the cars the observer counted? (c) What is the flow rate measured by the observer? (d) What is the car density on the track? Does density times space mean speed equal flow rate?

Chapter 7 Solutions

Materials Science And Engineering Properties

Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Principles of Foundation Engineering (MindTap Cou...
Civil Engineering
ISBN:9781337705028
Author:Braja M. Das, Nagaratnam Sivakugan
Publisher:Cengage Learning