(a)
Interpretation:
The following skeletal equation has to be balanced using
Concept Introduction:
Net ionic equation:
Net ionic equation is defined as the specific species that only involves to a particular reaction. This type of equations is generally used in acid-base neutralization reactions and redox reactions.
Oxidizing agent:
The material which gains electron in a
Reducing agent:
The material, which loses electrons in a chemical reaction, is called reducing agent. In this reaction, the oxidation number will be increased.
(a)
Answer to Problem 6K.6E
The balanced reaction for the production of chlorite ions from dichlorine heptoxide by reaction with hydrogen peroxide solution is given below,
Here, the oxidizing agent is
Explanation of Solution
The unbalanced skeletal equation for the reaction is
Oxidation half-reaction:
The oxidation number of
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Therefore, the balanced oxidation half-reaction is
Here,
Reduction half-reaction:
The oxidation number of
Balance the equation except
Balance the
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Therefore, the balanced reduction half-reaction is
Here, the
Now add the two half reactions together. Match the number of electrons in each side. Because in oxidation half reaction
Add the equation and cancel the common ions, electrons and water molecules in each side of the arrow.
Divide by 2 each side of the arrow.
Therefore, the balanced net ionic equation the above reaction is
(b)
Interpretation:
The following skeletal equation has to be balanced using oxidation and reduction half reactions and also the oxidizing agent, reducing agent has to be identified.
Concept introduction:
Refer to part (a).
(b)
Answer to Problem 6K.6E
The balanced reaction of permanganate ions with sulfide ions is given below,
Here, the oxidizing agent is
Explanation of Solution
The unbalanced skeletal equation for the reaction is
Oxidation half-reaction:
The oxidation number of
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Therefore, the balanced oxidation half-reaction is
Here,
Reduction half-reaction:
The oxidation number of
Balance the equation except
Balance the
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Here, the
Now add the two half reactions together. Match the number of electrons in each side. Because in oxidation half reaction
Add the equation and cancel the common ions, electrons and water molecules in each side of the arrow.
Therefore, the balanced net ionic equation the above reaction is
(c)
Interpretation:
The following skeletal equation has to be balanced using oxidation and reduction half reactions and also the oxidizing agent, reducing agent has to be identified.
Concept introduction:
Refer to part (a).
(c)
Answer to Problem 6K.6E
The balanced reaction of hydrazine with chlorate ions is given below,
Here, the oxidizing agent is
Explanation of Solution
The unbalanced skeletal equation for the reaction is
Oxidation half-reaction:
The oxidation number of
Balance the equation except
Balance the
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Therefore, the balanced oxidation half-reaction is
Here,
Reduction half-reaction:
The oxidation number of
Balance the
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Here, the
Now add the two half reactions together. Match the number of electrons in each side. Because in oxidation half reaction
Add the equation and cancel the common ions, electrons and water molecules in each side of the arrow.
Divide by
Therefore, the balanced net ionic equation the above reaction is
(d)
Interpretation:
The following skeletal equation has to be balanced using oxidation and reduction half reactions and also the oxidizing agent, reducing agent has to be identified.
Concept introduction:
Refer to part (a).
(d)
Answer to Problem 6K.6E
The balanced reaction of plumblate ions and hypochlorite ions is given below,
Here, the oxidizing agent is
Explanation of Solution
The unbalanced skeletal equation for the reaction is
Oxidation half-reaction:
The oxidation number of
Balance the equation except
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Therefore, the balanced oxidation half-reaction is
Here,
Reduction half-reaction:
The oxidation number of
Balance the equation except
Balance the
Balance the
Balance the net charges by adding the electrons.
Here, in left side, the net charge is
Here, the
Now add the two half reactions together. Match the number of electrons in each side. Because in oxidation half reaction
Add the equation and cancel the common ions, electrons and water molecules in each side of the arrow.
Divide by
Therefore, the balanced net ionic equation the above reaction is
Want to see more full solutions like this?
Chapter 6 Solutions
Chemical Principles: The Quest for Insight
- 1. Sometimes a reaction can fall in more than one category. Into what category (or categories) does the reaction of Ba(OH)2(aq) + H+PO4(aq) fit? acid-base and oxidation-reduction oxidation-reduction acid-base and precipitation precipitationarrow_forwardUse the appropriate tables to calculate H for (a) the reaction between MgC03(s) and a strong acid to give Mg2+(aq), CO2(g), and water. (b) the precipitation of iron(III) hydroxide from the reaction between iron(III) and hydroxide ions.arrow_forwardCalculate the molarity of AgNO3 in a solution prepared by dissolving 1.44 g AgNO3 in enough water to form 1.00 L solution.arrow_forward
- One of the few industrial-scale processes that produce organic compounds electrochemically is used by the Monsanto Company to produce1,4-dicyanobutane. The reduction reaction is 2CH2CHCH+2H++2eNC(CH2)4CN The NC(CH2)4CN is then chemically reduced using hydrogen gas to H2N(CH2)6NH2, which is used in the production of nylon. What current must be used to produce 150.kg NC(CH2)4CN per hour?arrow_forward1. If you wish to convert 0.0100 mol of Au3+ (aq) ions into Au(s) in a “gold-plating” process, how long must you electrolyze a solution if the current passing through the circuit is 2.00 amps? 483 seconds 4.83 104 seconds 965 seconds 1450 secondsarrow_forwardTriiodide ions are generated in solution by the following (unbalanced) reaction in acidic solution: IO3(aq) + I(aq) I3(aq) Triiodide ion concentration is determined by titration with a sodium thiosulfate (Na2S2O3) solution. The products are iodide ion and tetrathionate ion (S4O6). a. Balance the equation for the reaction of IO3 with I ions. b. A sample of 0.6013 g of potassium iodate was dissolved in water. Hydrochloric acid and solid potassium iodide were then added. What is the minimum mass of solid KI and the minimum volume of 3.00 M HQ required to convert all of the IO3 ions to I ions? c. Write and balance the equation for the reaction of S2O32 with I3 in acidic solution. d. A 25.00-mL sample of a 0.0100 M solution of KIO. is reacted with an excess of KI. It requires 32.04 mL of Na2S2O3 solution to titrate the I3 ions present. What is the molarity of the Na2S2O3 solution? e. How would you prepare 500.0 mL of the KIO3 solution in part d using solid KIO3?arrow_forward
- Aluminum is produced commercially by the electrolysis of Al2O3 in the presence of a molten salt. If a plant has a continuous capacity of 1.00 million A, what mass of aluminum can be produced in 2.00 h?arrow_forwardAn electrode is prepared from liquid mercury in contact with a saturated solution of mercury(I) chloride, Hg2Cl, containing 1.00 M Cl . The cell potential of the voltaic cell constructed by connecting this electrode as the cathode to the standard hydrogen half-cell as the anode is 0.268 V. What is the solubility product of mercury(I) chloride?arrow_forwardIf enough Li2SO4 dissolves in water to make a 0.33 M solution, explain why the molar concentration of Li+ is different from the molar concentration of Li2SO4(aq).arrow_forward
- The carbon dioxide exhaled in the breath of astronauts is often removed from the spacecraft by reaction with lithium hydroxide 2LiOH(s)+CO2(g)Li2CO3(s)+H2O(l) Estimate the grams of lithium hydroxide required per astronaut per day. Assume that each astronaut requires 2.50 103 kcal of energy per day. Further assume that this energy can be equated to the heat of combustion of a quantity of glucose, C6H12O6, to CO2(g) and H2O(l). From the amount of glucose required to give 2.50 103 kcal of heat, calculate the amount of CO2 produced and hence the amount of LiOH required. The H for glucose(s) is 1273 kJ/mol.arrow_forwardThe iron content of hemoglobin is determined by destroying the hemoglobin molecule and producing small water-soluble ions and molecules. The iron in the aqueous solution is reduced to iron(II) ion and then titrated against potassium permanganate. In the titration, iron(ll) is oxidized to iron(III) and permanganate is reduced to manganese(II) ion. A 5.00-g sample of hemoglobin requires 32.3 mL of a 0.002100 M solution of potassium permanganate. The reaction with permanganate ion is MnO4(aq)+8H+(aq)+5Fe2+(aq)Mn2+(aq)+5Fe3+(aq)+4H2O What is the mass percent of iron in hemoglobin?arrow_forwardDescribe in words how you would prepare pure crystalline AgCl and NaNO3 from solid AgNO3 and solid NaCl.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning