
Concept explainers
(a)
Interpretation:
The
Concept Introduction:
Henderson – Hasselbalch equation:
The
(a)

Explanation of Solution
Given that, the
By using Henderson – Hasselbalch equation, the initial
The addition of a base will react with the weak acid and thus decreases the concentration of weak acid and increases the concentration of conjugate base.
The reaction of added base with some of
The initial number of moles of acid can be calculated as shown below.
The number of moles of added base can be calculated as shown below.
The molar ratio of acid and added base in the above equation is
Now, the remaining amount of acid can be estimated.
The new concentration of conjugate base can be calculated as shown below.
Now, the
Therefore, the
(b)
Interpretation:
The
Concept Introduction:
Refer to part (a).
(b)

Explanation of Solution
Given that, the
By using Henderson – Hasselbalch equation, the initial
The addition of a strong acid will react with the conjugate base and thus decreases the concentration of conjugate base and increases the concentration of weak acid.
The reaction of added acid with some of
The initial number of moles of acid can be calculated as shown below.
The number of moles of added acid can be calculated as shown below.
The new concentration of weak acid can be calculated as shown below.
The molar ratio of conjugate base and added acid is
Now, the remaining amount of conjugate base can be estimated.
Now, the
Therefore, the
Want to see more full solutions like this?
Chapter 6 Solutions
Chemical Principles: The Quest for Insight
- For Raman spectroscopy/imaging, which statement is not true regarding its disadvantages? a) Limited spatial resolution. b) Short integration time. c) A one-dimensional technique. d) Weak signal, only 1 in 108 incident photons is Raman scattered. e) Fluorescence interference.arrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c. (Please provide a full derivation of the equation for x from the equation for I). d) Calculate x for the 1645 cm-1 bandarrow_forwardI need help with the follloaingarrow_forward
- For a CARS experiment on a Raman band 918 cm-1, if omega1= 1280 nm, calculate the omega2 in wavelength (nm) and the CARS output in wavelength (nm).arrow_forwardI need help with the following questionarrow_forwardFor CARS, which statement is not true regarding its advantages? a) Contrast signal based on vibrational characteristics, no need for fluorescent tagging. b) Stronger signals than spontaneous Raman. c) Suffers from fluorescence interference, because CARS signal is at high frequency. d) Faster, more efficient imaging for real-time analysis. e) Higher resolution than spontaneous Raman microscopy.arrow_forward
- Draw the major product of the Claisen condensation reaction between two molecules of this ester. Ignore inorganic byproducts. Incorrect, 5 attempts remaining 1. NaOCH3/CH3OH 2. Acidic workup Select to Draw O Incorrect, 5 attempts remaining The total number of carbons in the parent chain is incorrect. Review the reaction conditions including starting materials and/or intermediate structures and recount the number of carbon atoms in the parent chain of your structure. OKarrow_forwardUsing a cell of known pathlength b = 1.25115 x 10-3 cm, a water absorption spectrum was measured. The band at 1645 cm-1, assigned to the O-H bending, showed an absorbance, A, of 1.40. a) Assuming that water density is 1.00 g/mL, calculate the water molar concentration c (hint: M= mole/L) b) Calculate the molar absorptivity, a, of the 1645 cm-1 band c) The transmitted light, I, can be written as I= Ioexp(-xb), where x is the absorption coefficient (sometimes designated as alpha), Io is the input light, and b is the cell pathlength. Prove that x= (ln10)*x*c d) Calculate x for the 1645 cm-1 bandarrow_forwardConvert 1.38 eV into wavelength (nm) and wavenumber (cm-1) (c = 2.998 x 108 m/s; h = 6.626 x 10-34 J*s).arrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage Learning
