Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 6, Problem 56P
A model for an airplane’s pitch loop is shown in Figure P6.12. Find the range of gain, K, that will keep the system stable. Can the system ever be unstable for positive values of K?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
answer completely please
MECHANICAL VIBRATIONS TWO DEGREE OF FREEDOM
A satellite single-axis amplitude control system can be represented by the block diagram is
as shown in Figure 2.11. The variable k, a and b are controller parameters, andj is the
spacecraft moment of inertia. Suppose the moment of inertia is J=7.8E+08 (slug-ft), and the
controller parameters are k=10.8E+08, a=1.5 and b=8.
Spacecraft
Rotational
R(s)
Controller
motion
C(s)
k(s + a)
(s + b)
js?
Figure 2.11 A negative feedback control system
a) Develop an m-file script to compute the closed loop transfer function.
b) Compute and plot the step response to a 10° step input.
c) The exact moment of inertia is generally unknown and any change slowly with time.
Compare the step response performance of the spacecraft when J is reduced by 25%
and 60%.
Chapter 6 Solutions
Control Systems Engineering
Ch. 6 - Prob. 1RQCh. 6 - Prob. 2RQCh. 6 - What would happen to a physical system chat...Ch. 6 - Why are marginally stable systems considered...Ch. 6 - Prob. 5RQCh. 6 - Prob. 6RQCh. 6 - Prob. 7RQCh. 6 - Prob. 8RQCh. 6 - Prob. 9RQCh. 6 - Why do we sometimes multiply a row of a Routh...
Ch. 6 - Prob. 11RQCh. 6 - Prob. 12RQCh. 6 - 13. Does the presence of an entire row of zeros...Ch. 6 - Prob. 14RQCh. 6 - Prob. 15RQCh. 6 - Prob. 16RQCh. 6 - Tell how many roots of the following polynomial...Ch. 6 - Tell how many roots of the following polynomial...Ch. 6 - Using the Routh table, tell how many poles of the...Ch. 6 - Prob. 4PCh. 6 - Determine how many closed-loop poles lie in the...Ch. 6 - Determine how many closed-loop poles lie in the...Ch. 6 - MATLAB ML 7. Use MATLAB to find the pole location...Ch. 6 - Symbolic Math SM 8. Use MATLAB and the Symbolic...Ch. 6 - Determine whether the unity feedback system of...Ch. 6 - Use MATLAB to find the pole locations for the...Ch. 6 - Consider the unity feedback system of Figure P6.3...Ch. 6 - In the system of Figure P6.3, let Gs=Ks+1ss2s+3...Ch. 6 - Given the unity feedback system of Figure P6.3...Ch. 6 - Using the Routh-Hurwitz criterion and the unity...Ch. 6 - Given the unity feedback system of Figure P6.3...Ch. 6 - Repeat Problem 15 using MATLAB.Ch. 6 - Prob. 17PCh. 6 - For the system of Figure P6.4, tell how many...Ch. 6 - Using the Routh-Hurwitz criterion, tell how many...Ch. 6 - Determine if the unity feedback system of Figure...Ch. 6 - For the unity feedback system of Figure P6.3 with...Ch. 6 - In the system of Figure P6.3, let Gs=Ksassb Find...Ch. 6 - For the unity feedback system of Figure P63 with...Ch. 6 - Find the range of K for stability for the unity...Ch. 6 - For the unity feedback system of Figure P6.3 with...Ch. 6 - find the range of K for stability. [Section: 6.41]...Ch. 6 - Find the range of gain, K, to ensure stability in...Ch. 6 - Using the Routh-Hurwitz criterion, find the value...Ch. 6 - Use the Routh-Hurwitz criterion to find the range...Ch. 6 - Prob. 32PCh. 6 - Given the unity feedback system of Figure P63 with...Ch. 6 - Repeat Problem 33 for [Section: 6.4]...Ch. 6 - For the system shown in Figure P6.8, find the...Ch. 6 - Given the unity feedback system of Figure P6.3...Ch. 6 - For the unity feedback system of Figure P6.3 with...Ch. 6 - For the unity feedback system of Figure P6.3 with...Ch. 6 - Given the unity feedback system of Figure P6.3...Ch. 6 - Using the Routh-Hurwitz criterion and the unity...Ch. 6 - Find the range of K to keep the system shown in...Ch. 6 - Prob. 43PCh. 6 - The closed-loop transfer function of a system is...Ch. 6 - Prob. 45PCh. 6 - Prob. 46PCh. 6 - An interval polynomial is of the form...Ch. 6 - A linearized model of a torque-controlled crane...Ch. 6 - The read/write head assembly arm of a computer...Ch. 6 - A system is represented in state space as...Ch. 6 - State Space SS 52. The following system in state...Ch. 6 - Prob. 54PCh. 6 - A model for an airplane’s pitch loop is shown in...Ch. 6 - Prob. 57PCh. 6 - Prob. 58PCh. 6 - Prob. 59PCh. 6 - Prob. 60PCh. 6 - Prob. 61PCh. 6 - Look-ahead information can be used to...Ch. 6 - Prob. 63PCh. 6 - It has been shown (Pounds, 2011) that an unloaded...Ch. 6 - Prob. 65PCh. 6 - The system shown in Figure P6.16 has G1s=1/ss+2s+4...Ch. 6 - Prob. 67PCh. 6 - Prob. 68PCh. 6 - Hybrid vehicle. Figure P6.l8 shows the HEV system...Ch. 6 - Prob. 70P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2. A model for an airplane's pitch loop is shown below. Find the range of K that will keep the system stable. Can the system ever be unstable for positive values of K? Controller Aircraft dynamics Commanded pitch angle + K(s + 1) Pitch angle s + 10 s2 + 0.6s + 9 (s + 4.85) 1 Gyroarrow_forwardConsider in Figure 1 = 0. Iff, the translational mechanical system shown P4.17. A 1-pound force, f(t), is applied at 1, find K and M such that the response is characterized by a 4-second settling time and a 1-second peak time. Also, what is the resulting percent overshoot? [Section: 4.6] 1+ 270 Karrow_forwardFigure Q3 shows one cart with a mass that is separated from two walls by two springs and a dashpot, where kı, k2 and ka are the first, second spring and dashpot coefficients, respectively. The mass, m could represent an automobile system. An external force is also shown as F(t). Only horizontal motion and forces are considered. F(t) is input and x2(t) is output. (a) Derive all equations related to the system (b) Construct the block diagram from equation in (a) (c) Obtain the transfer function of the systemarrow_forward
- Mechanical Vibrations problemarrow_forwardForcing Function Spring Constant f(t) k Mass m Friction Constant b Mass Displacement y(t) 3. Consider the following spring-mass-damper mechanical system (it is placed sideways, so that you won't need to consider gravity). The input is given by f(t), and the output is y(t). Find an equation in time domain that defines the relationship between the input f(t) and the output y(t).arrow_forwardNOTE PLEASE SHOW CODE FOR OCTAVE OR MATLABF(t) = 300Narrow_forward
- The state X(t) of a dynamical system is solution of equation 10x (t) + 30ax(t) = 40, with a = 13. Calculate the rise time of the response.arrow_forwardTyping solution please Thanks broarrow_forwardA machine weighing 2000 N rests on a support as illustrated in Figure P2.37. The support deflects about 5 cm as a result of the weight of the machine. The floor under the support is somewhat flexible and moves, because of the motion of a nearby machine, harmonically near resonance (r=1) with an amplitude of 0.2 cm. Model the floor as base motion, and assume a damping ratio of = 0.01, and calculate the transmitted force and the amplitude of the transmitted displacement. 2.37 Machine of mass m Rubber mount modeled as a A = static deflection stiffness k and a damper c Flexible floor y(t) Figure P2.37arrow_forward
- 2. Figure 2 shows a simplified model to simulate a recording head flying over a rough disk surface in computer hard disk drives. The head has mass m and is supported by a suspension with stiffness k₁. Moreover, the moving disk surface will generate an air bearing lifting the head slightly above the disk surface (e.g., in the order of 20 nm). The air bearing is simplied as a linear spring with stiffness k2 and damping coefficient c. Let x(t) be the roughness of the disk surface and serve as the input excitation to the head/suspension system. Moreover, y(t) is the relative displacement of the head to the disk. In real hard disk drive applications, we want to keep y(t) almost constant, so that the head can follow the disk surface to perform read/write operations. (a) Show that the equation of motion is mi+cy + (k1 + k2) y = −mä – k₁x (2) 1 (b) Derive the frequency response function. Plot the magnitude and phase of the frequency response function. In plotting the frequency response…arrow_forwardHello, I want a solution with a correct picture. Thxarrow_forwardA mass of 2 kilograms is on a spring with spring constant k newtons per meter with no damping. Suppose the system is at rest and at time t = 0 the mass is kicked and starts traveling at 2 meters per second. How large does k have to be to so that the mass does not go further than 3 meters from the rest position? use 2nd order differential equations to solve (mechanical vibrations)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Undamped Free Vibration of SDOF (1/2) - Structural Dynamics; Author: structurefree;https://www.youtube.com/watch?v=BkgzEdDlU78;License: Standard Youtube License