Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 75P
Figure 5-62 is an overhead view of a 12 kg tire that is to be pulled by three horizontal ropes. One rope’s force (F1 = 50 N) is indicated. The forces from the other ropes are to be oriented such that the tire’s acceleration magnitude a is least. What is that least a if (a) F2 = 30 N, F3 = 20 N; (b) F2 = 30 N, F3 = 10 N; and (c) F2 = F3 = 30 N?
Figure 5-62 Problem 75.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Four people are attempting to move a stage platform across the floor. If they exert the horizontal forces shown, determine (a) the
equivalent force-couple system at O and (b) the points on the x- and y-axes through which the line of action of the single resultant force
R passes.
Assume F1-69 lb, F2-60 lb, F3-32 lb. F4-61 lb,a-75 in, b-60 in, and = 47°
F₁
F₁-
Answers:
(a) The force-couple system at O
R=
b
Mo-
(i
i
(b) The line of action of the single resultant R:
On the x-xx-
On the y-axis y
i
klb-in
in.
in.
In Fig. 6-45, a 1.34 kg ball is connected by means of two massless strings, each of length L = 1.70 m, to a vertical, rotating rod. The strings are tied to the rod with separation d = 1.70 m and are taut. The tension in the upper string is 35 N. What are the (a) tension in the lower string, (b) magnitude of the net force on the ball, and (c) speed of the ball? (d) What is the direction of ?
Block A in Fig. 6-56 has mass mA = 4.0 kg, and block B has mass mB 2.0 kg.The coefficient of kinetic friction between block B and the horizontal plane is mk= 0.50.The inclined plane is frictionless and at angle u= 30°.The pulley serves only to change the direction of the cord connecting the blocks. The cord has negligible mass. Find (a) the tension in the cord and (b) the magnitude of the acceleration of the blocks.
Chapter 5 Solutions
Fundamentals of Physics Extended
Ch. 5 - Figure 5-19 gives the free-body diagram for four...Ch. 5 - Two horizontal forces, F1=(3N)i (4N)jandF2=(1N)i...Ch. 5 - In Fig. 5-21, forces F1 and F2 are applied to a...Ch. 5 - At time t = 0, constant F begins to act on a rock...Ch. 5 - Figure 5-22 shows overhead views of four...Ch. 5 - Figure 5-23 shows the same breadbox in four...Ch. 5 - July 17, 1981, Kansas City: The newly opened Hyatt...Ch. 5 - Figure 5-25 gives three graphs of velocity...Ch. 5 - Figure 5-26 shows a train of four blocks being...Ch. 5 - Figure 5-27 shows three blocks being pushed across...
Ch. 5 - A vertical force F is applied to a block of mass m...Ch. 5 - Figure 5-28 shows four choices for the direction...Ch. 5 - Only two horizontal forces act on a 3.0 kg body...Ch. 5 - Two horizontal forces act on a 2.0 kg chopping...Ch. 5 - If the 1 kg standard body has an acceleration of...Ch. 5 - While two forces act on it, a particle is to move...Ch. 5 - GO Three astronauts, propelled by jet backpacks,...Ch. 5 - In a two-dimensional tug-of-war, Alex, Betty, and...Ch. 5 - SSM There are two forces on the 2.00 kg box in the...Ch. 5 - A 2.00 kg object is subjected to three forces that...Ch. 5 - A 0.340 kg particle moves in an xy plane according...Ch. 5 - GO A 0.150 kg particle moves along an x axis...Ch. 5 - A 2.0 kg particle moves along an x axis, being...Ch. 5 - GO Two horizontal forces F1 and F2 act on a 4.0 kg...Ch. 5 - Figure 5-33 shows an arrangement in which four...Ch. 5 - A block with a weight of 3.0 N is at rest on a...Ch. 5 - SSM a An 11.0 kg salami is supported by a cord...Ch. 5 - Some insects can walk below a thin rod such as a...Ch. 5 - SSM WWW In Fig. 5-36, let the mass of the block be...Ch. 5 - In April 1974, John Massis of Belgium managed to...Ch. 5 - SSM A 500 kg rocket sled can be accelerated at a...Ch. 5 - A car traveling at 53 km/h hits a bridge abutment....Ch. 5 - A constant horizontal force Fa pushes a 2.00 kg...Ch. 5 - A customer sits in an amusement park ride in which...Ch. 5 - Tarzan, who weighs 820 N, swings from a cliff at...Ch. 5 - 24 There are two horizontal forces on the 2.0 kg...Ch. 5 - Sunjamming. A sun yacht is a spacecraft with a...Ch. 5 - The tension at which a fishing line snaps is...Ch. 5 - SSM An electron with a speed of 1.2 107 m/s moves...Ch. 5 - A car that weighs 1.30 104 N is initially moving...Ch. 5 - A firefighter who weighs 712 N slides down a...Ch. 5 - The high-speed winds around a tornado can drive...Ch. 5 - SSM WWW A block is projected up a frictionless...Ch. 5 - Figure 5-39 shows an overhead view of a 0.0250 kg...Ch. 5 - An elevator cab and its load have a combined mass...Ch. 5 - GO In Fig. 5-40, a crate of mass m = 100 kg is...Ch. 5 - The velocity of a 3.00 kg particle is given by...Ch. 5 - Holding on to a towrope moving parallel to a...Ch. 5 - A 40 kg girl and an 8.4 kg sled are on the...Ch. 5 - A 40 kg skier skis directly down a frictionless...Ch. 5 - ILW A sphere of mass 3.0 104 kg is suspended from...Ch. 5 - GO A dated box of dates, of mass 5.00 kg, is sent...Ch. 5 - Using a rope that will snap if the tension in it...Ch. 5 - GO In earlier days, horses pulled barges down...Ch. 5 - SSM In Fig. 5-43, a chain consisting of five...Ch. 5 - A lamp hangs vertically from a cord in a de...Ch. 5 - An elevator cab that weighs 27.8 kN moves upward....Ch. 5 - An elevator cab is pulled upward by a cable. The...Ch. 5 - GO The Zacchini family was renowned for their...Ch. 5 - GO In Fig. 5-44, elevator cabs A and B are...Ch. 5 - In Fig. 5-45, a block of mass m = 5.00 kg is...Ch. 5 - GO Fig. 5-46, three ballot boxes are connected by...Ch. 5 - GO Figure 5-47 shows two blocks connected by a...Ch. 5 - An 85 kg man lowers himself to the ground from a...Ch. 5 - In Fig. 5-48, three connected blocks are pulled to...Ch. 5 - GO Figure 5-49 shows four penguins that are being...Ch. 5 - SSM ILW WWW Two blocks are in contact on a...Ch. 5 - GO In Fig. 5-51a, a constant horizontal force Fa...Ch. 5 - ILW A block of mass m1 = 3.70 kg on a frictionless...Ch. 5 - Figure 5-53 shows a man sitting in a bosuns chair...Ch. 5 - SSM A 10 kg monkey climbs up a massless rope that...Ch. 5 - Figure 5-45 shows a 5.00 kg block being pulled...Ch. 5 - SSM ILW A hot-air balloon of mass M is descending...Ch. 5 - In shot putting, many athletes elect to launch the...Ch. 5 - GO Figure 5-55 gives, as a function of time t, the...Ch. 5 - GO Figure 5-56 shows a box of mass m2 = 1.0 kg on...Ch. 5 - GO Figure 5-47 shows Atwoods machine, in which two...Ch. 5 - GO Figure 5-57 shows a section of a cable-car...Ch. 5 - Figure 5-58 shows three blocks attached by cords...Ch. 5 - A shot putter launches a 7.260 kg shot by pushing...Ch. 5 - In Fig. 5-59, 4.0 kg block A and 6.0 kg block B...Ch. 5 - An 80 kg man drops to a concrete patio from a...Ch. 5 - SSM Figure 5-60 shows a box of dirty money mass m1...Ch. 5 - Three forces act on a particle that moves with...Ch. 5 - SSM In Fig. 5-61, a tin of antioxidants m1 = 1.0...Ch. 5 - The only two forces acting on a body have...Ch. 5 - Figure 5-62 is an overhead view of a 12 kg tire...Ch. 5 - A block of mass M is pulled along a horizontal...Ch. 5 - SSM A worker drags a crate across a factory floor...Ch. 5 - In Fig. 5-64, a force F of magnitude 12 N is...Ch. 5 - A certain particle has a weight of 22 N at a point...Ch. 5 - An 80 kg person is parachuting and experiencing a...Ch. 5 - A spaceship lifts off vertically from the Moon,...Ch. 5 - In the overhead view of Fig. 5-65, five forces...Ch. 5 - SSM A certain force gives an object of mass m1 an...Ch. 5 - Prob. 84PCh. 5 - A 52 kg circus performer is to slide down a rope...Ch. 5 - Compute the weight of a 75 kg space ranger a on...Ch. 5 - An object is hung from a spring balance attached...Ch. 5 - Imagine a landing craft approaching the surface of...Ch. 5 - A 1400 kg jet engine is fastened to the fuselage...Ch. 5 - An interstellar ship has a mass of 1.20 106 kg...Ch. 5 - SSM A motorcycle and 60.0 kg rider accelerate at...Ch. 5 - Prob. 92PCh. 5 - SSM Figure 5-66a shows a mobile hanging from a...Ch. 5 - For sport, a 12 kg armadillo runs onto a large...Ch. 5 - Suppose that in Fig. 5-12, the masses of the...Ch. 5 - A nucleus that captures a stray neutron must bring...Ch. 5 - If the 1 kg standard body is accelerated by only...
Additional Science Textbook Solutions
Find more solutions based on key concepts
1. Rub your hands together vigorously. What happens? Discuss the energy transfers and transformations that take...
College Physics: A Strategic Approach (3rd Edition)
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
8. A human maintaining a vegan diet (containing no animal products) would be a:
a. producer
b. primary consume...
Human Biology: Concepts and Current Issues (8th Edition)
The term chemistry needs to be explained. Concept introduction :Chemistry is a branch of science which deals wi...
Living By Chemistry: First Edition Textbook
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 100 N force, directed at an angle u above a horizontal floor, is applied to a 25.0 kg chair sitting on the floor. If u =0, what are (a) the horizontal component Fh of the applied force and (b) the magnitude FN of the normal force of the floor on the chair? If u =30.0, what are (c) Fh and (d) FN? If u =60.0, what are (e) Fh and (f) FN? Now assume that the coefficient of static friction between chair and floor is 0.420. Does the chair slide or remain at rest if u is (g) 0, (h) 30.0, and (i) 60.0?arrow_forwardAn eagle descends steeply onto its prey. Its weight (the gravitational force on the eagle), of magnitude 60.0 N, points downward in the -y-direction. The lift force exerted on the eagle’s wings by the air, also of magnitude 60.0 N, is at an angle of 20.0° from the vertical (the +y-direction) and 70.0° from the +x-direction. The drag force (air resistance) exerted on the eagle by the air has magnitude 15.0 N and is at an angle of 20.0° from the-x-direction and 70.0° from the +y-direction. Find the x- and y-components of the net external force on the eagle, and find the force’s magnitude and direction.arrow_forwardA block is placed on a wooden plank, which is initially horizontal. One end of the plank is slowly raised to make it more and more inclined, and for a while the block stays in place on the plank and doesn't slide due to static friction. Finally, when the plank reaches an incline of 56.3oabove horizontal, the block begins to slide. What is the coefficient of static friction between the block and the plank?arrow_forward
- looking at a ski slope, the length of the slope is 10.00x10^2m and the top of the slope is at an angle of 8.00 degrees relative to the horizontal. Once the slope has ended the skier continues along a level horizontal before stopping. The coefficient of kinetic friction between the skis and the snow is 0.090 on both the slope and the straight horizontal section. What is the distance that the man travels on this horizontal section, assuming that the man started from the rest at the top of the slope.arrow_forwardA particle of mass 6 kg is placed on a rough plane inclined at an angle a to the horizontal where sin a = 0.8. The coefficient of friction between the particle and the plane is 0.4. An upward force PN actson the particle along a line of greatest slope of the plane. Find the greatest value of Parrow_forwardA student of weight 635 N rides a steadily rotating Ferris wheel (the student sits upright). At the highest point, the magnitude of the normal force É is doubled, what is the magnitude FN at the (b) highest and (c) lowest point? N on the student from the seat is 593 N. (a) What is the magnitude of F N at the lowest point? If the wheel's speed (a) Number Units (b) Number Units Units (c) Numberarrow_forward
- On a horizontal plane a block of mass m = 0.30 kg is placed and initially held at rest. To this block a massless string is attached and it initially keeps another block of mass M = 0.50 kg vertically at rest via a fixed pulley as shown in Figure. The coefficient of kinetic friction between the block m and the plane is Pk -0.25, but the friction between the block M and the vertical wall is zero. Calculate the tension T by string in N. (Hint: First calculate the acceleration of m or M. And set up the equation of motion for M to find the tension T.) T m Marrow_forwardIn the figure, a block of mass m = 5.44 kg is pulled along a horizontal frictionless floor by a cord that exerts a force of magnitude F = 10.6 N at an angle 0 = 24.0°. (a) What is the magnitude of the block's acceleration? (b) The force magnitude F is slowly increased. What is its value just before the block is lifted (completely) off the floor? (c) What is the magnitude of the block's acceleration just before it is lifted (completely) off the floor? (a) Number Units (b) Number Units (c) Number Unitsarrow_forwardThe figure shows an overhead view of a 0.026 kg lemon half and two of the three horizontal forces that act on it as it is on a frictionless table. Force F has a magnitude of 3N and is at e, - 31. Force F2 has a magnitude of 10 N and is at 02- 33". In unit-vector notation, what is t third force if the lemon half (a) is stationary, (b) has the constant velocity V (137-14) m (12h- 14) m/s?, where t is time? %3D and (c) has the V = %3Darrow_forward
- A 5.0-kg crate is on an incline that makes an angle 30° with the horizontal. If the coefficient of static friction is 0.5, the maximum force that can be applied parallel to the plane without moving the crate is: (А) 3.3 N (в) 21 N C) 46 N D) 55 Narrow_forwardA roller-coaster car is towed up an incline at a steady speed of 0.500 m/s by a chain parallel to the surface of the incline. The slope is 3.00%, which means that the elevation increases by 3.00 m for every 100.0 m of horizontal distance. The mass of the roller-coaster car is 594 kg. Ignoring friction, what is the magnitude of the force exerted on the car by the chain?arrow_forwardYou are holding a book of mass 10.7 kg that is initially at rest against a vertical wall by exerting a force of magnitudeF Yb = 100.8 N at an angle of θ = 34.7 degrees, as indicated in the figure.If the coefficients of friction between the book and the wall are μs = 0.46 and μk = 0.36, find the magnitude of thefrictional force from the wall on the book.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY