Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 5, Problem 39P
ILW A sphere of mass 3.0 × 10−4 kg is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 37° with the vertical. Find (a) the push magnitude and (b) the tension in the cord.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A sphere of mass 4.0 x 104 kg is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a
constant angle of 20° with the vertical. Find (a) the magnitude of that push and (b) the tension in the cord.
A sphere of mass 3.0 × 10-4 kg is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 11° with the vertical. Find (a) the magnitude of that push and (b) the tension in the cord.
You are holding a book of mass 10.7 kg that is initially at rest against a vertical wall by exerting a force of magnitudeF Yb = 100.8 N at an angle of θ = 34.7 degrees, as indicated in the figure.If the coefficients of friction between the book and the wall are μs = 0.46 and μk = 0.36, find the magnitude of thefrictional force from the wall on the book.
Chapter 5 Solutions
Fundamentals of Physics Extended
Ch. 5 - Figure 5-19 gives the free-body diagram for four...Ch. 5 - Two horizontal forces, F1=(3N)i (4N)jandF2=(1N)i...Ch. 5 - In Fig. 5-21, forces F1 and F2 are applied to a...Ch. 5 - At time t = 0, constant F begins to act on a rock...Ch. 5 - Figure 5-22 shows overhead views of four...Ch. 5 - Figure 5-23 shows the same breadbox in four...Ch. 5 - July 17, 1981, Kansas City: The newly opened Hyatt...Ch. 5 - Figure 5-25 gives three graphs of velocity...Ch. 5 - Figure 5-26 shows a train of four blocks being...Ch. 5 - Figure 5-27 shows three blocks being pushed across...
Ch. 5 - A vertical force F is applied to a block of mass m...Ch. 5 - Figure 5-28 shows four choices for the direction...Ch. 5 - Only two horizontal forces act on a 3.0 kg body...Ch. 5 - Two horizontal forces act on a 2.0 kg chopping...Ch. 5 - If the 1 kg standard body has an acceleration of...Ch. 5 - While two forces act on it, a particle is to move...Ch. 5 - GO Three astronauts, propelled by jet backpacks,...Ch. 5 - In a two-dimensional tug-of-war, Alex, Betty, and...Ch. 5 - SSM There are two forces on the 2.00 kg box in the...Ch. 5 - A 2.00 kg object is subjected to three forces that...Ch. 5 - A 0.340 kg particle moves in an xy plane according...Ch. 5 - GO A 0.150 kg particle moves along an x axis...Ch. 5 - A 2.0 kg particle moves along an x axis, being...Ch. 5 - GO Two horizontal forces F1 and F2 act on a 4.0 kg...Ch. 5 - Figure 5-33 shows an arrangement in which four...Ch. 5 - A block with a weight of 3.0 N is at rest on a...Ch. 5 - SSM a An 11.0 kg salami is supported by a cord...Ch. 5 - Some insects can walk below a thin rod such as a...Ch. 5 - SSM WWW In Fig. 5-36, let the mass of the block be...Ch. 5 - In April 1974, John Massis of Belgium managed to...Ch. 5 - SSM A 500 kg rocket sled can be accelerated at a...Ch. 5 - A car traveling at 53 km/h hits a bridge abutment....Ch. 5 - A constant horizontal force Fa pushes a 2.00 kg...Ch. 5 - A customer sits in an amusement park ride in which...Ch. 5 - Tarzan, who weighs 820 N, swings from a cliff at...Ch. 5 - 24 There are two horizontal forces on the 2.0 kg...Ch. 5 - Sunjamming. A sun yacht is a spacecraft with a...Ch. 5 - The tension at which a fishing line snaps is...Ch. 5 - SSM An electron with a speed of 1.2 107 m/s moves...Ch. 5 - A car that weighs 1.30 104 N is initially moving...Ch. 5 - A firefighter who weighs 712 N slides down a...Ch. 5 - The high-speed winds around a tornado can drive...Ch. 5 - SSM WWW A block is projected up a frictionless...Ch. 5 - Figure 5-39 shows an overhead view of a 0.0250 kg...Ch. 5 - An elevator cab and its load have a combined mass...Ch. 5 - GO In Fig. 5-40, a crate of mass m = 100 kg is...Ch. 5 - The velocity of a 3.00 kg particle is given by...Ch. 5 - Holding on to a towrope moving parallel to a...Ch. 5 - A 40 kg girl and an 8.4 kg sled are on the...Ch. 5 - A 40 kg skier skis directly down a frictionless...Ch. 5 - ILW A sphere of mass 3.0 104 kg is suspended from...Ch. 5 - GO A dated box of dates, of mass 5.00 kg, is sent...Ch. 5 - Using a rope that will snap if the tension in it...Ch. 5 - GO In earlier days, horses pulled barges down...Ch. 5 - SSM In Fig. 5-43, a chain consisting of five...Ch. 5 - A lamp hangs vertically from a cord in a de...Ch. 5 - An elevator cab that weighs 27.8 kN moves upward....Ch. 5 - An elevator cab is pulled upward by a cable. The...Ch. 5 - GO The Zacchini family was renowned for their...Ch. 5 - GO In Fig. 5-44, elevator cabs A and B are...Ch. 5 - In Fig. 5-45, a block of mass m = 5.00 kg is...Ch. 5 - GO Fig. 5-46, three ballot boxes are connected by...Ch. 5 - GO Figure 5-47 shows two blocks connected by a...Ch. 5 - An 85 kg man lowers himself to the ground from a...Ch. 5 - In Fig. 5-48, three connected blocks are pulled to...Ch. 5 - GO Figure 5-49 shows four penguins that are being...Ch. 5 - SSM ILW WWW Two blocks are in contact on a...Ch. 5 - GO In Fig. 5-51a, a constant horizontal force Fa...Ch. 5 - ILW A block of mass m1 = 3.70 kg on a frictionless...Ch. 5 - Figure 5-53 shows a man sitting in a bosuns chair...Ch. 5 - SSM A 10 kg monkey climbs up a massless rope that...Ch. 5 - Figure 5-45 shows a 5.00 kg block being pulled...Ch. 5 - SSM ILW A hot-air balloon of mass M is descending...Ch. 5 - In shot putting, many athletes elect to launch the...Ch. 5 - GO Figure 5-55 gives, as a function of time t, the...Ch. 5 - GO Figure 5-56 shows a box of mass m2 = 1.0 kg on...Ch. 5 - GO Figure 5-47 shows Atwoods machine, in which two...Ch. 5 - GO Figure 5-57 shows a section of a cable-car...Ch. 5 - Figure 5-58 shows three blocks attached by cords...Ch. 5 - A shot putter launches a 7.260 kg shot by pushing...Ch. 5 - In Fig. 5-59, 4.0 kg block A and 6.0 kg block B...Ch. 5 - An 80 kg man drops to a concrete patio from a...Ch. 5 - SSM Figure 5-60 shows a box of dirty money mass m1...Ch. 5 - Three forces act on a particle that moves with...Ch. 5 - SSM In Fig. 5-61, a tin of antioxidants m1 = 1.0...Ch. 5 - The only two forces acting on a body have...Ch. 5 - Figure 5-62 is an overhead view of a 12 kg tire...Ch. 5 - A block of mass M is pulled along a horizontal...Ch. 5 - SSM A worker drags a crate across a factory floor...Ch. 5 - In Fig. 5-64, a force F of magnitude 12 N is...Ch. 5 - A certain particle has a weight of 22 N at a point...Ch. 5 - An 80 kg person is parachuting and experiencing a...Ch. 5 - A spaceship lifts off vertically from the Moon,...Ch. 5 - In the overhead view of Fig. 5-65, five forces...Ch. 5 - SSM A certain force gives an object of mass m1 an...Ch. 5 - Prob. 84PCh. 5 - A 52 kg circus performer is to slide down a rope...Ch. 5 - Compute the weight of a 75 kg space ranger a on...Ch. 5 - An object is hung from a spring balance attached...Ch. 5 - Imagine a landing craft approaching the surface of...Ch. 5 - A 1400 kg jet engine is fastened to the fuselage...Ch. 5 - An interstellar ship has a mass of 1.20 106 kg...Ch. 5 - SSM A motorcycle and 60.0 kg rider accelerate at...Ch. 5 - Prob. 92PCh. 5 - SSM Figure 5-66a shows a mobile hanging from a...Ch. 5 - For sport, a 12 kg armadillo runs onto a large...Ch. 5 - Suppose that in Fig. 5-12, the masses of the...Ch. 5 - A nucleus that captures a stray neutron must bring...Ch. 5 - If the 1 kg standard body is accelerated by only...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m = 13 kg rests on an inclined plane with a coefficient of static friction of μs = 0.085 between the block and the plane. The inclined plane is L = 6.9 m long and it has a height of h = 3.15 m at its tallest point. Part (a) What angle, θ in degrees, does the plane make with respect to the horizontal? Part (b) What is the magnitude of the normal force, FN in newtons, that acts on the block? Part (c) What is the component of the force of gravity along the plane, Fgx in newtons? Part (d) Write an expression, in terms of θ, the mass m, the coefficient of static friction μs, and the gravitational constant g, for the magnitude of the force due to static friction, Fs, just before the block begins to slide. Part (e) Will the block slide?arrow_forwardA sphere of mass 4.8 x 104 kg is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 17° with the vertical. Find (a) the magnitude of that push and (b) the tension in the cord. (a) Number i Units N (b) Number i Unitsarrow_forwardA sphere of mass 4.7 × 10-4 kg is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 26° with the vertical. Find (a) the magnitude of that push and (b) the tension in the cord.arrow_forward
- A 3.71 kg block is pushed along a horizontal floor by a force of magnitude 30.0 N at a downward angle 0 = 40.0%. The coefficient of kinetic friction between the block and the floor is 0.240. Calculate the magnitudes of (a) the frictional force on the block from the floor and (b) the block's acceleration.arrow_forwardA sphere of mass 5.4 x 10-4 kg is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 36° with the vertical. Find (a) the magnitude of that push and (b) the tension in the cord. (a) Number Units (b) Number i Unitsarrow_forwardA sphere of mass 5.0 × 10-4 kg is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 16° with the vertical. Find (a) the magnitude of that push and (b) the tension in the cord. (a) Number Units (b) Number Units MO iarrow_forward
- A 100 N force, directed at an angle u above a horizontal floor, is applied to a 25.0 kg chair sitting on the floor. If u =0, what are (a) the horizontal component Fh of the applied force and (b) the magnitude FN of the normal force of the floor on the chair? If u =30.0, what are (c) Fh and (d) FN? If u =60.0, what are (e) Fh and (f) FN? Now assume that the coefficient of static friction between chair and floor is 0.420. Does the chair slide or remain at rest if u is (g) 0, (h) 30.0, and (i) 60.0?arrow_forwardA sphere of mass 3.9 × 104 kg is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 25° with the vertical. Find (a) the magnitude of that push and (b) the tension in the cord. (a) Number i (b) Number i Units Unitsarrow_forwardYour answer is partially correct. A sphere of mass 4.6 x 10-4 kg is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 38° with the vertical. Find (a) the magnitude of that push and (b) the tension in the cord. (a) Number i 0.003 Units (b) Number i 0.006 Units Narrow_forward
- A 3.97 kg block is pushed along a horizontal floor by a force of magnitude 30.0 N at a downward angle θ = 40.0°. The coefficient of kinetic friction between the block and the floor is 0.260. Calculate the magnitudes of (a) the frictional force on the block from the floor and (b) the block’s acceleration.arrow_forwardA 3.74 kg block is pushed along a horizontal floor by a force F of magnitude 32.0 N at a downward angle 0 = 40.0°. The coefficient of kinetic friction between the block and the floor is 0.250. Calculate the magnitudes of (a) the frictional force on the block from the floor and (b) the block's acceleration. (a) Number i Units (b) Number i Units Ꮎarrow_forwardA block is pushed across a horizontal surface by the force F with constant velocity. F = 20N Θ = 30° M = 10kg What is the magnitude of the normal force on the block?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Drawing Free-Body Diagrams With Examples; Author: The Physics Classroom;https://www.youtube.com/watch?v=3rZR7FSSidc;License: Standard Youtube License