Concept explainers
GO In Fig. 5-51a, a constant horizontal force
Figure 5.51 Problem 56.
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
College Physics: A Strategic Approach (3rd Edition)
Chemistry & Chemical Reactivity
Chemistry: Structure and Properties (2nd Edition)
Applications and Investigations in Earth Science (9th Edition)
- A block of mass 4.20 kg is pushed up against a wall by a force P that makes an angle of θ = 50.0°angle with the horizontal as shown below. The coefficient of static friction between the block and the wall is 0.270.arrow_forwardTwo sheets of plywood A and B lie on the bed of the truck. They have the same weight W, and the coefficient of static friction between the two sheets of wood and between sheet B and the truck bed is µg. (a) If you apply a horizontal force to sheet A and apply no force sheet B to move? What force is necessary to cause sheet A to start to sheet B, can you slide sheet A off the truck without causing moving? (b) If you prevent sheet A from moving by exerting a horizontal force on it, what horizontal force on sheet B is necessary to start it moving? ܥܪ ܩ A B Larrow_forwarda block of mass m is held stationary on a ramp by the frictional force on it from the ramp. A force , directed up the ramp, is then applied to the block and gradually increased in magnitude from zero. During the increase, what happens to the direction and magnitude of the frictional force on the block?arrow_forward
- In the figure, a block weighing 23.0 N is held at rest against a vertical wall by a horizontal force of magnitude 61 N. The coefficient of static friction between the wall and the block is 0.55, and the coefficient of kinetic friction between them is 0.38. In six experiments, a second force P is applied to the block and directed parallel to the wall with these magnitudes and directions: (a)35 N, up, (b) 13 N, up, (c)48 N, up, (d)62 N, up, (e)9.1 N, down, and (f)19 N, down. In each experiment, what is the frictional force on the block, including sign? Take the direction up the wall as positive, and down the wall as negative. Next, calculate the acceleration, including sign, of the block in each case. Note that acceleration is zero if the block does not move. (g) What is the acceleration in (a)? (h) What is the acceleration in (b)? (i) What is the acceleration in (c)? (i) What is the acceleration in (d)? (k) What is the acceleration in (e)? (1) What is the acceleration in (f)?arrow_forwardThe upper leg muscle (quadriceps) exerts a force of 294 N, which is carried by a tendon over the kneecap (the patella) at the angles of 55 ° upward and 75 ° downward. Find the direction and magnitude of the force exerted by the kneecap on the upper leg bone (the femur).arrow_forwardA 12 N horizontal force pushes a block weighing 5.0 N against a vertical wall . The coefficient of static friction between the wall and the block is 0.60, and the coefficient of kinetic friction is 0.40. Assume that the block is not moving initially. (a) Will the block move? (b) In unit-vector notation, what is the force on the block from the wall?arrow_forward
- You are holding a book of mass 10.7 kg that is initially at rest against a vertical wall by exerting a force of magnitudeF Yb = 100.8 N at an angle of θ = 34.7 degrees, as indicated in the figure.If the coefficients of friction between the book and the wall are μs = 0.46 and μk = 0.36, find the magnitude of thefrictional force from the wall on the book.arrow_forwardOn a particle of mass m = 20gr, three forces F1, F2 and F3 act in the plane of the paper. The forces F2 = 4N, F3 = 3 N and F1 is unknown as indicated in the figure. If a product of the action of these three forces the particle acquires an acceleration a = 0.2m/s2 in the direction θ=20°, determine the direction and the magnitude of the force F1. The alpha angle of the direction of the force F3 is 300°arrow_forwardCalculate the magnitude of the normal force on a 15.2 kg block in the following circumstances. The block is on a level surface and a force of 165 N is exerted on it at an angle of 40.8° above the horizontal.arrow_forward
- A block of mass m1 = 3.9 kg is placed on top of a block with mass m2 = 5.4 kg. A force, F = is applied to m2, at an angle 16.1 degrees above the horizontal. If the coefficient of static friction between all moving surfaces is 0.42 and the coefficient of kinetic friction is 0.32, determine the magnitude of the minimum force that will get the blocks moving.arrow_forwarda block weighing 22 N is held at rest against a vertical wall by a horizontal force of magnitude 60 N.The coefficient of static friction between the wall and the block is 0.55, and the coefficient of kinetic friction between them is 0.38. In six experiments, a second force is applied to the block and directed parallel to the wall with these magnitudes and directions: (a) 34 N, up, (b) 12 N, up, (c) 48 N, up, (d) 62 N, up, (e) 10 N, down, and (f) 18 N, down. In each experiment, what is the magnitude of the frictional force on the block? In which does the block move (g) up the wall and (h) down the wall? (i) In which is the frictional force directed down the wall?arrow_forwardThe figure shows an overhead view of a 0.0270 kg lemon half and two of the three horizontal forces that act on it as it is on a frictionless table. Force Was a magnitude of 5.00 N and is at 9₁ = 33.0°. Force was a magnitude of 8.00 N and is at 92 = 28.0°. In unit- vector notation, what is the third force if the lemon half (a) is stationary, (b) has the constant velocity m/s, and (c) has the varying velocity m/s, where t is time? (a) Number -1.0326 (b) Number i -1.0326 (c) Number i -0.7626 citarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON