Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 74P
The only two forces acting on a body have magnitudes of 20 N and 35 N and directions that differ by 80°. The resulting acceleration has a magnitude of 20 m/s2. What is the mass of the body?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A 1.5-kg mass has an acceleration of (4.0i ^ − 3.0j ^ ) m/s2. Only two forces act on the mass. If one of the forces is (2.0i ^ − 1.4j ^ ) N, what is the magnitude of the other force?
The only two forces acting on a body have magnitudes of 20 N and 35 N and directions that differ by 80.The resulting acceleration has a magnitude of 20 m/s2. What is the mass of the body?
Two forces of 25 and 45 N act on an object. Their directions differ by 70°. The resulting acceleration has
magnitude of 10.0 m/s². What is the mass of the body?
Chapter 5 Solutions
Fundamentals of Physics Extended
Ch. 5 - Figure 5-19 gives the free-body diagram for four...Ch. 5 - Two horizontal forces, F1=(3N)i (4N)jandF2=(1N)i...Ch. 5 - In Fig. 5-21, forces F1 and F2 are applied to a...Ch. 5 - At time t = 0, constant F begins to act on a rock...Ch. 5 - Figure 5-22 shows overhead views of four...Ch. 5 - Figure 5-23 shows the same breadbox in four...Ch. 5 - July 17, 1981, Kansas City: The newly opened Hyatt...Ch. 5 - Figure 5-25 gives three graphs of velocity...Ch. 5 - Figure 5-26 shows a train of four blocks being...Ch. 5 - Figure 5-27 shows three blocks being pushed across...
Ch. 5 - A vertical force F is applied to a block of mass m...Ch. 5 - Figure 5-28 shows four choices for the direction...Ch. 5 - Only two horizontal forces act on a 3.0 kg body...Ch. 5 - Two horizontal forces act on a 2.0 kg chopping...Ch. 5 - If the 1 kg standard body has an acceleration of...Ch. 5 - While two forces act on it, a particle is to move...Ch. 5 - GO Three astronauts, propelled by jet backpacks,...Ch. 5 - In a two-dimensional tug-of-war, Alex, Betty, and...Ch. 5 - SSM There are two forces on the 2.00 kg box in the...Ch. 5 - A 2.00 kg object is subjected to three forces that...Ch. 5 - A 0.340 kg particle moves in an xy plane according...Ch. 5 - GO A 0.150 kg particle moves along an x axis...Ch. 5 - A 2.0 kg particle moves along an x axis, being...Ch. 5 - GO Two horizontal forces F1 and F2 act on a 4.0 kg...Ch. 5 - Figure 5-33 shows an arrangement in which four...Ch. 5 - A block with a weight of 3.0 N is at rest on a...Ch. 5 - SSM a An 11.0 kg salami is supported by a cord...Ch. 5 - Some insects can walk below a thin rod such as a...Ch. 5 - SSM WWW In Fig. 5-36, let the mass of the block be...Ch. 5 - In April 1974, John Massis of Belgium managed to...Ch. 5 - SSM A 500 kg rocket sled can be accelerated at a...Ch. 5 - A car traveling at 53 km/h hits a bridge abutment....Ch. 5 - A constant horizontal force Fa pushes a 2.00 kg...Ch. 5 - A customer sits in an amusement park ride in which...Ch. 5 - Tarzan, who weighs 820 N, swings from a cliff at...Ch. 5 - 24 There are two horizontal forces on the 2.0 kg...Ch. 5 - Sunjamming. A sun yacht is a spacecraft with a...Ch. 5 - The tension at which a fishing line snaps is...Ch. 5 - SSM An electron with a speed of 1.2 107 m/s moves...Ch. 5 - A car that weighs 1.30 104 N is initially moving...Ch. 5 - A firefighter who weighs 712 N slides down a...Ch. 5 - The high-speed winds around a tornado can drive...Ch. 5 - SSM WWW A block is projected up a frictionless...Ch. 5 - Figure 5-39 shows an overhead view of a 0.0250 kg...Ch. 5 - An elevator cab and its load have a combined mass...Ch. 5 - GO In Fig. 5-40, a crate of mass m = 100 kg is...Ch. 5 - The velocity of a 3.00 kg particle is given by...Ch. 5 - Holding on to a towrope moving parallel to a...Ch. 5 - A 40 kg girl and an 8.4 kg sled are on the...Ch. 5 - A 40 kg skier skis directly down a frictionless...Ch. 5 - ILW A sphere of mass 3.0 104 kg is suspended from...Ch. 5 - GO A dated box of dates, of mass 5.00 kg, is sent...Ch. 5 - Using a rope that will snap if the tension in it...Ch. 5 - GO In earlier days, horses pulled barges down...Ch. 5 - SSM In Fig. 5-43, a chain consisting of five...Ch. 5 - A lamp hangs vertically from a cord in a de...Ch. 5 - An elevator cab that weighs 27.8 kN moves upward....Ch. 5 - An elevator cab is pulled upward by a cable. The...Ch. 5 - GO The Zacchini family was renowned for their...Ch. 5 - GO In Fig. 5-44, elevator cabs A and B are...Ch. 5 - In Fig. 5-45, a block of mass m = 5.00 kg is...Ch. 5 - GO Fig. 5-46, three ballot boxes are connected by...Ch. 5 - GO Figure 5-47 shows two blocks connected by a...Ch. 5 - An 85 kg man lowers himself to the ground from a...Ch. 5 - In Fig. 5-48, three connected blocks are pulled to...Ch. 5 - GO Figure 5-49 shows four penguins that are being...Ch. 5 - SSM ILW WWW Two blocks are in contact on a...Ch. 5 - GO In Fig. 5-51a, a constant horizontal force Fa...Ch. 5 - ILW A block of mass m1 = 3.70 kg on a frictionless...Ch. 5 - Figure 5-53 shows a man sitting in a bosuns chair...Ch. 5 - SSM A 10 kg monkey climbs up a massless rope that...Ch. 5 - Figure 5-45 shows a 5.00 kg block being pulled...Ch. 5 - SSM ILW A hot-air balloon of mass M is descending...Ch. 5 - In shot putting, many athletes elect to launch the...Ch. 5 - GO Figure 5-55 gives, as a function of time t, the...Ch. 5 - GO Figure 5-56 shows a box of mass m2 = 1.0 kg on...Ch. 5 - GO Figure 5-47 shows Atwoods machine, in which two...Ch. 5 - GO Figure 5-57 shows a section of a cable-car...Ch. 5 - Figure 5-58 shows three blocks attached by cords...Ch. 5 - A shot putter launches a 7.260 kg shot by pushing...Ch. 5 - In Fig. 5-59, 4.0 kg block A and 6.0 kg block B...Ch. 5 - An 80 kg man drops to a concrete patio from a...Ch. 5 - SSM Figure 5-60 shows a box of dirty money mass m1...Ch. 5 - Three forces act on a particle that moves with...Ch. 5 - SSM In Fig. 5-61, a tin of antioxidants m1 = 1.0...Ch. 5 - The only two forces acting on a body have...Ch. 5 - Figure 5-62 is an overhead view of a 12 kg tire...Ch. 5 - A block of mass M is pulled along a horizontal...Ch. 5 - SSM A worker drags a crate across a factory floor...Ch. 5 - In Fig. 5-64, a force F of magnitude 12 N is...Ch. 5 - A certain particle has a weight of 22 N at a point...Ch. 5 - An 80 kg person is parachuting and experiencing a...Ch. 5 - A spaceship lifts off vertically from the Moon,...Ch. 5 - In the overhead view of Fig. 5-65, five forces...Ch. 5 - SSM A certain force gives an object of mass m1 an...Ch. 5 - Prob. 84PCh. 5 - A 52 kg circus performer is to slide down a rope...Ch. 5 - Compute the weight of a 75 kg space ranger a on...Ch. 5 - An object is hung from a spring balance attached...Ch. 5 - Imagine a landing craft approaching the surface of...Ch. 5 - A 1400 kg jet engine is fastened to the fuselage...Ch. 5 - An interstellar ship has a mass of 1.20 106 kg...Ch. 5 - SSM A motorcycle and 60.0 kg rider accelerate at...Ch. 5 - Prob. 92PCh. 5 - SSM Figure 5-66a shows a mobile hanging from a...Ch. 5 - For sport, a 12 kg armadillo runs onto a large...Ch. 5 - Suppose that in Fig. 5-12, the masses of the...Ch. 5 - A nucleus that captures a stray neutron must bring...Ch. 5 - If the 1 kg standard body is accelerated by only...
Additional Science Textbook Solutions
Find more solutions based on key concepts
15. A good scientific hypothesis is based on existing evidence and leads to testable predictions. What hypothes...
Campbell Biology: Concepts & Connections (9th Edition)
Which one of the following is not a fuel produced by microorganisms? a. algal oil b. ethanol c. hydrogen d. met...
Microbiology: An Introduction
40. Taipei 101 (a 101-story building in Taiwan) is sited in an area that is prone to earthquakes and typhoons, ...
College Physics: A Strategic Approach (3rd Edition)
50. For each solution, calculate the initial and final pH after adding 0.010 mol of NaOH.
a. 250.0 mL of pure w...
Chemistry: A Molecular Approach (4th Edition)
2. The structural and function unit of life is (a) a cell, (b) an organ, (c) the organism, (d) a molecule.
Human Anatomy & Physiology (Marieb, Human Anatomy & Physiology) Standalone Book
16. ATP is synthesized from ADP, Pi, and a proton on the matrix side of the inner mitochondrial membrane. We wi...
Biochemistry: Concepts and Connections (2nd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A bag of cement weighing 325 N hangs in equilibrium from three wires as suggested in Figure P4.23. Two of the wires make angles 1 = 60.0 and 2 = 40.0 with the horizontal. Assuming the system is in equilibrium, find the tensions T1, T2, and T3 in the wires. Figure P4.23 Problems 23 and 24.arrow_forwardAn SUV drives on a straight-line track. Starting with a speed v0 = 14.4m/s, it comes to rest over a distance d = 28.8m Part (a) Write an expression for the magnitude of the net force on a passenger with mass m . If m = 61.3kg, then what is the numeric value, in newtons, for the net force in Part (a)? .arrow_forwardA 1.5-kg mass has an acceleration of (4.0i - 3.0j) m/s². Only two forces act on the mass. If one of the forces is (2.0i - 1.4j) N, what is the magnitude of the other force? 4.1 N 07.1 N 5.1 N O24N 6.1 Narrow_forward
- A space traveller weighs herself on Earth at a location where the acceleration due to gravity is 9.82 m/s² and finds a value of 543 N. What is her mass m? The traveller travels to a planet in a neighboring solar system. It is a long trip, but she somehow manages to maintain her physical condition by conscientious exercise and diet control. The acceleration due to gravity on this planet is 13.9 m/s². What are the traveller's weight w and mass m' on the planet? W = m = N m' = kg kgarrow_forwardMary applies a force of 71 N to push a box with an acceleration of 0.45 m/s2. When she increases the pushing force to 79 N, the box's acceleration changes to 0.63 m/s2. There is a constant friction force present between the floor and the box. (a)What is the mass of the box in kilograms? ?kg (b)What is the coefficient of kinetic friction between the floor and the box?arrow_forwardA constant force acting on a body of mass 3.0 kg changes its speed from 2.0 ms-1 to 3.5 ms-1 in 25 s. The direction of the motion of the body remains unchanged. What is the magnitude and direction of the force?arrow_forward
- Only two horizontal forces act on a 3.0 kg body that can move over a frictionless floor. One force is 9.0 N, acting due east, and the other is 6.4 N, acting 51° north of west. What is the magnitude of the body's acceleration? m/s?arrow_forwardMary applies a force of 78 N to push a box with an acceleration of 0.54 m/s2. When she increases the pushing force to 83 N, the box's acceleration changes to 0.70 m/s2. There is a constant friction force present between the floor and the box. (a) What is the mass of the box in kilograms? kg (b) What is the coefficient of kinetic friction between the floor and the box?arrow_forwardA lamp hangs from the ceiling of an elevator as it slows to a stop as it approaches the top floor in a building. The tension in the cord holding the lamp is 90 N and the elevator slows at a rate of 3.2 m/s^2. What is the mass of the lamp?arrow_forward
- A 3.45×103 kg train is stopped at a station. The train must go around a 149 m diameter corner right after it leaves the station. As the train leaves the station it provides a constant forward force of 1.67×103 N. What is the train's acceleration after 5.00 s?arrow_forwardQuestion 3. A hockey puck with a mass of 0.5 kg slides horizontally on the frictionless ice of a hockey rink. Two hockey sticks hit the puck simultaneously, exerting two forces F1 and F2. The force F has a magnitude of 5 N and is directed 36.6 degrees below the positive x-axis. F2 has a magnitude of 10 N and is directed 60 degrees above the positive x-axis. Determine the magnitude and direction of the puck's acceleration.arrow_forward1. In the figure, a horse pulls a barge along a canal by means of a rope. The force on the barge from the rope has a magnitude of 7830 N and is at the angle θ = 14° from the barge's motion, which is in the positive direction of an x axis extending along the canal. The mass of the barge is 9500 kg, and the magnitude of its acceleration is 0.12 m/s2. What are (a) the magnitude and (b) the direction (measured from the positive direction of the x axis) of the force on the barge from the water? Give your answer for (b) in the range of (-180°, 180°]. 2. Holding onto a tow rope moving parallel to a frictionless ski slope, a 47.0 kg skier is pulled up the slope, which is at an angle of 9.7° with the horizontal. What is the magnitude Frope of the force on the skier from the rope when (a) the magnitude v of the skier's velocity is constant at 2.38 m/s and (b) v = 2.38 m/s as v increases at a rate of 0.128 m/s2? 3. In the figure, a crate of mass m = 118 kg is pushed at a constant speed up a…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Second Law of Motion: F = ma; Author: Professor Dave explains;https://www.youtube.com/watch?v=xzA6IBWUEDE;License: Standard YouTube License, CC-BY