Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 33P
An elevator cab and its load have a combined mass of 1600 kg. Find the tension in the supporting cable when the cab, originally moving downward at 12 m/s, is brought to rest with constant acceleration in a distance of 42 m.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two blocks, each of mass m=3.50kg, are hung from the ceiling of an elevator. (a) If the elevator moves with an upward acceleration a of magnitude 1.60m/s 2 , find the tensions T 1 and T 2 in the upper and lower strings. (b) If the strings can withstand a maximum tension of 85.0N, what maximum acceleration can the elevator have before a string breaks.
An elevator weighing 3200lb is supported by a steel cable. Find the tension in the cable of the elevator if it is to be accelerated 15 ft/s2 upward and if it is to be accelerated 10 ft/s2 downward.
An elevator cab that weighs 23.6 kN moves upward. What is the tension in the cable if the cab's speed is (a) increasing at a rate of 1.06
m/s? and (b) decreasing at a rate of 1.06 m/s??
(a) Number
i
Units
(b) Number
i
Units
>
>
Chapter 5 Solutions
Fundamentals of Physics Extended
Ch. 5 - Figure 5-19 gives the free-body diagram for four...Ch. 5 - Two horizontal forces, F1=(3N)i (4N)jandF2=(1N)i...Ch. 5 - In Fig. 5-21, forces F1 and F2 are applied to a...Ch. 5 - At time t = 0, constant F begins to act on a rock...Ch. 5 - Figure 5-22 shows overhead views of four...Ch. 5 - Figure 5-23 shows the same breadbox in four...Ch. 5 - July 17, 1981, Kansas City: The newly opened Hyatt...Ch. 5 - Figure 5-25 gives three graphs of velocity...Ch. 5 - Figure 5-26 shows a train of four blocks being...Ch. 5 - Figure 5-27 shows three blocks being pushed across...
Ch. 5 - A vertical force F is applied to a block of mass m...Ch. 5 - Figure 5-28 shows four choices for the direction...Ch. 5 - Only two horizontal forces act on a 3.0 kg body...Ch. 5 - Two horizontal forces act on a 2.0 kg chopping...Ch. 5 - If the 1 kg standard body has an acceleration of...Ch. 5 - While two forces act on it, a particle is to move...Ch. 5 - GO Three astronauts, propelled by jet backpacks,...Ch. 5 - In a two-dimensional tug-of-war, Alex, Betty, and...Ch. 5 - SSM There are two forces on the 2.00 kg box in the...Ch. 5 - A 2.00 kg object is subjected to three forces that...Ch. 5 - A 0.340 kg particle moves in an xy plane according...Ch. 5 - GO A 0.150 kg particle moves along an x axis...Ch. 5 - A 2.0 kg particle moves along an x axis, being...Ch. 5 - GO Two horizontal forces F1 and F2 act on a 4.0 kg...Ch. 5 - Figure 5-33 shows an arrangement in which four...Ch. 5 - A block with a weight of 3.0 N is at rest on a...Ch. 5 - SSM a An 11.0 kg salami is supported by a cord...Ch. 5 - Some insects can walk below a thin rod such as a...Ch. 5 - SSM WWW In Fig. 5-36, let the mass of the block be...Ch. 5 - In April 1974, John Massis of Belgium managed to...Ch. 5 - SSM A 500 kg rocket sled can be accelerated at a...Ch. 5 - A car traveling at 53 km/h hits a bridge abutment....Ch. 5 - A constant horizontal force Fa pushes a 2.00 kg...Ch. 5 - A customer sits in an amusement park ride in which...Ch. 5 - Tarzan, who weighs 820 N, swings from a cliff at...Ch. 5 - 24 There are two horizontal forces on the 2.0 kg...Ch. 5 - Sunjamming. A sun yacht is a spacecraft with a...Ch. 5 - The tension at which a fishing line snaps is...Ch. 5 - SSM An electron with a speed of 1.2 107 m/s moves...Ch. 5 - A car that weighs 1.30 104 N is initially moving...Ch. 5 - A firefighter who weighs 712 N slides down a...Ch. 5 - The high-speed winds around a tornado can drive...Ch. 5 - SSM WWW A block is projected up a frictionless...Ch. 5 - Figure 5-39 shows an overhead view of a 0.0250 kg...Ch. 5 - An elevator cab and its load have a combined mass...Ch. 5 - GO In Fig. 5-40, a crate of mass m = 100 kg is...Ch. 5 - The velocity of a 3.00 kg particle is given by...Ch. 5 - Holding on to a towrope moving parallel to a...Ch. 5 - A 40 kg girl and an 8.4 kg sled are on the...Ch. 5 - A 40 kg skier skis directly down a frictionless...Ch. 5 - ILW A sphere of mass 3.0 104 kg is suspended from...Ch. 5 - GO A dated box of dates, of mass 5.00 kg, is sent...Ch. 5 - Using a rope that will snap if the tension in it...Ch. 5 - GO In earlier days, horses pulled barges down...Ch. 5 - SSM In Fig. 5-43, a chain consisting of five...Ch. 5 - A lamp hangs vertically from a cord in a de...Ch. 5 - An elevator cab that weighs 27.8 kN moves upward....Ch. 5 - An elevator cab is pulled upward by a cable. The...Ch. 5 - GO The Zacchini family was renowned for their...Ch. 5 - GO In Fig. 5-44, elevator cabs A and B are...Ch. 5 - In Fig. 5-45, a block of mass m = 5.00 kg is...Ch. 5 - GO Fig. 5-46, three ballot boxes are connected by...Ch. 5 - GO Figure 5-47 shows two blocks connected by a...Ch. 5 - An 85 kg man lowers himself to the ground from a...Ch. 5 - In Fig. 5-48, three connected blocks are pulled to...Ch. 5 - GO Figure 5-49 shows four penguins that are being...Ch. 5 - SSM ILW WWW Two blocks are in contact on a...Ch. 5 - GO In Fig. 5-51a, a constant horizontal force Fa...Ch. 5 - ILW A block of mass m1 = 3.70 kg on a frictionless...Ch. 5 - Figure 5-53 shows a man sitting in a bosuns chair...Ch. 5 - SSM A 10 kg monkey climbs up a massless rope that...Ch. 5 - Figure 5-45 shows a 5.00 kg block being pulled...Ch. 5 - SSM ILW A hot-air balloon of mass M is descending...Ch. 5 - In shot putting, many athletes elect to launch the...Ch. 5 - GO Figure 5-55 gives, as a function of time t, the...Ch. 5 - GO Figure 5-56 shows a box of mass m2 = 1.0 kg on...Ch. 5 - GO Figure 5-47 shows Atwoods machine, in which two...Ch. 5 - GO Figure 5-57 shows a section of a cable-car...Ch. 5 - Figure 5-58 shows three blocks attached by cords...Ch. 5 - A shot putter launches a 7.260 kg shot by pushing...Ch. 5 - In Fig. 5-59, 4.0 kg block A and 6.0 kg block B...Ch. 5 - An 80 kg man drops to a concrete patio from a...Ch. 5 - SSM Figure 5-60 shows a box of dirty money mass m1...Ch. 5 - Three forces act on a particle that moves with...Ch. 5 - SSM In Fig. 5-61, a tin of antioxidants m1 = 1.0...Ch. 5 - The only two forces acting on a body have...Ch. 5 - Figure 5-62 is an overhead view of a 12 kg tire...Ch. 5 - A block of mass M is pulled along a horizontal...Ch. 5 - SSM A worker drags a crate across a factory floor...Ch. 5 - In Fig. 5-64, a force F of magnitude 12 N is...Ch. 5 - A certain particle has a weight of 22 N at a point...Ch. 5 - An 80 kg person is parachuting and experiencing a...Ch. 5 - A spaceship lifts off vertically from the Moon,...Ch. 5 - In the overhead view of Fig. 5-65, five forces...Ch. 5 - SSM A certain force gives an object of mass m1 an...Ch. 5 - Prob. 84PCh. 5 - A 52 kg circus performer is to slide down a rope...Ch. 5 - Compute the weight of a 75 kg space ranger a on...Ch. 5 - An object is hung from a spring balance attached...Ch. 5 - Imagine a landing craft approaching the surface of...Ch. 5 - A 1400 kg jet engine is fastened to the fuselage...Ch. 5 - An interstellar ship has a mass of 1.20 106 kg...Ch. 5 - SSM A motorcycle and 60.0 kg rider accelerate at...Ch. 5 - Prob. 92PCh. 5 - SSM Figure 5-66a shows a mobile hanging from a...Ch. 5 - For sport, a 12 kg armadillo runs onto a large...Ch. 5 - Suppose that in Fig. 5-12, the masses of the...Ch. 5 - A nucleus that captures a stray neutron must bring...Ch. 5 - If the 1 kg standard body is accelerated by only...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Interpret the factors which remain constant and variable when a balloon with a volume of 240 mL at 25°C and 1.0...
Living By Chemistry: First Edition Textbook
50. For each solution, calculate the initial and final pH after adding 0.010 mol of NaOH.
a. 250.0 mL of pure w...
Chemistry: A Molecular Approach (4th Edition)
Is the general circulation of the surface currents in the North Atlantic Ocean clockwise or counterclockwise?
Applications and Investigations in Earth Science (9th Edition)
4. Three groups of nonvascular plants are _______, ______, and _______. Three groups of seedless vascular plant...
Biology: Life on Earth (11th Edition)
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
Look at the relative positions of each pair of atoms listed here in the periodic table. How many core electrons...
Organic Chemistry (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A traffic light weighing 100 N hangs from a vertical cable tied to two other cables that are fastened to a support. The upper cables make angles of 37.0° and 53.0° with the horizontal. Find the tension in each of the three cables.arrow_forwardA mass of 62 kg is suspended from a ceiling by two lengths of rope that make angles of 52deg and 74deg with the ceiling. Determine the tension, correct to one decimal place, in each of the ropes.arrow_forwardA 10-lb block B rests as shown on a 20-lb bracket A. The coefficients of friction are μs= 0.30 and uk = 0.25 between block B and bracket A , and there is no friction in the pulley or between the bracket and the horizontal surface. (a) Determine the maximum weight of block C if block B is not to slide on bracket A.(b) If the weight of block C is 10 percent larger than the answer found in a, determine the accelerations of A, B, and C.arrow_forward
- A worker pulls a 15-kg crate in a straight line on a level surface by imparting a horizontal tension of 80 N to the free end of a cable whose other end is attached to the crate. If the coefficient of static friction is 0.40, what is the acceleration of the crate?arrow_forwardA hoist of mass 4 tonnes is hauled vertically upwards by a cable and covers a distance of 3.2m in 4 seconds from rest with a uniform acceleration. Determine the tension in the cablearrow_forwardAn elevator cab and its load have a combined mass of 7.8 kg. When the cab, originally moving downward at 7.3 m/s, is brought to rest with constant acceleration in a distance of 9.6 m. The tension (N) in the supporting cable will be: Answer:arrow_forward
- A trinket of mass 0.740 kg is suspended from the ceiling of a truck accelerating horizontally (+x-direction) at 3.40 m/s?. The string that supports the trinket exerts a tension force of 7.68 N and makes an angle with the vertical, as shown. What is the angle 0? {Consider Newton's Laws and the forces/components. Note the angle is with the y-axis} O 19.1° O 30.7° O 45.0° O 24.50 O 36.9° O 70.8° NOO H AL ROAINEarrow_forwardA worker develops a tension T in the cable as he attempts to move the 41-kg cart up the 19° incline. Determine the resulting acceleration a of the cart if (a) T = 120 N and (b) T = 158 N. Neglect all friction, except that at the worker's feet. The acceleration a is positive if up the slope, negative if down the slope. 41 kg 12° m/s² m/s² 19° Answers: (a) T = 120 N, a= i (b) T=158 N, a = Telarrow_forwardA sphere of mass 4.5 × 10-4 kg is suspended from a cord. A steady horizontal breeze pushes the sphere so that the cord makes a constant angle of 38° with the vertical. Find the tension in the cordarrow_forward
- An elevator and its load have a combined mass of 2000 kg. Find the tension in the supporting cable when the elevator, originally moving downward at 11 m/s, is brought to rest with constant acceleration in a distance of 38 m. Number Unitsarrow_forwardAn object weighing 4.5kg originally suspended by a vertical cord is pulled by a horizontal force until the cord makes and angle of 60˚ with the vertical. Find (a.) the tension in the cord, and the (b) the magnitude of the horizontal force to keep the object in this position.arrow_forwardYour answer is partially correct. An elevator cab that weighs 28.6 kN moves upward. What is the tension in the cable if the cab's speed is (a) increasing at a rate of 1.20 m/s? and (b) decreasing at a rate of 1.20 m/s?? (a) Number i 3.21 Units N (b) Number 2.51 Units Narrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY