Concept explainers
Two horizontal forces act on a 2.0 kg chopping block that can slide over a frictionless kitchen counter, which lies in an xy plane. One force is
Want to see the full answer?
Check out a sample textbook solutionChapter 5 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Microbiology: An Introduction
Cosmic Perspective Fundamentals
Genetic Analysis: An Integrated Approach (3rd Edition)
Chemistry
Biology: Life on Earth with Physiology (11th Edition)
- In the figure, a force P acts on a block weighing 45.0 N. The block is initially at rest on a plane inclined at angle = 18.0° to the horizontal. The positive direction of the x axis is up the plane. The coefficients of friction between block and plane are μ = 0.540 and Uk = 0.340. In unit-vector notation, what is the frictional force on the block from the plane when Pis (a) (-5.30 N)î, (b) (-8.10 N)î, and (c) (-15.1 N)? (a) Number i (b) Number i (c) Number i i+ i+ i i i+ i j Units j Units j Unitsarrow_forwardThe figure shows an overhead view of a 0.0260 kg lemon half and two of the three horizontal forces that act on it as it is on a frictionless table. Force F, has a magnitude of 6.00 N and is at e, = 25.0°. Force F2 has a magnitude of 7.00 N and is at 02 = 26.0°. In unit-vector notation, what is the third force if the lemon half (a) is stationary, (b) has the constant velocity v = (12.0i – 12.0j) m/s, and (c) has the V = (14.0tî – 14.0fj) m/s², where t is time?arrow_forwardBesides the gravitational force, a 2.90-kg object is subjected to one other constant force. The object starts from rest and in 1.20 s experiences a displacement of (4.30î − 3.30ĵ) m, where the direction of ĵ is the upward vertical direction. Determine the other force. (Express your answer in vector form.)arrow_forward
- Chapter 05, Problem 010 GO A 0.180 kg particle moves along an x axis according to x(t) = - 14.0 + 2.00 t + 4.00 2- 5.00 t, with x in meters and t in seconds. In unit-vector notation, what is the net force acting on the particle at t = 3.30 s ? Give an expression for the (a) x, (b) y and (c) z components. (a) Number Units (b) Number Units (c) Number Units Click if you would like to Show Work for this question: Open Show Work Question Attempts: Unlimited SAVE FOR LATER SUBMIT ANSWER powered by MapleNet ere to search 1:51 PM ENG 4/4/2021 ASUS 19home prt sc pause break delete f10 end f1Pgup f12Pgdn insert & 21 4. 8 backspo-arrow_forwardA block of mass M2 = 8.45 kg on a frictionless plane inclined moving down at angleθ2 = 50° is connected by a cord over a massless, frictionless pulley to a second block of mass M1= 5.36 kg on a horizontal surface. The coefficient of kinetic friction between M1 and the surfaceis μk = 0.15, and the Force F = 11.3 N is acting on M1 at angle θ1 = 30° to the horizontal. (a)draw a free body diagram for each block in the system. (b) What is the acceleration for M1? (c)What is the tension in the cord? (d) After M2moves 10 cm, what is the velocity of M1? (Thesystem was initially at rest)arrow_forwardThe figure shows an overhead view of a 0.0270 kg lemon half and two of the three horizontal forces that act on it as it is on a frictionless table. Force Was a magnitude of 5.00 N and is at 9₁ = 33.0°. Force was a magnitude of 8.00 N and is at 92 = 28.0°. In unit- vector notation, what is the third force if the lemon half (a) is stationary, (b) has the constant velocity m/s, and (c) has the varying velocity m/s, where t is time? (a) Number -1.0326 (b) Number i -1.0326 (c) Number i -0.7626 citarrow_forwardThe figure shows an overhead view of a 0.0270 kg lemon half and two of the three horizontal forces that act on it as it is on a frictionless table. Force ₁ has a magnitude of 5.00 N and is at 0₁ = 33.0°. Force ₂ has a magnitude of 8.00 N and is at 0₂ = 28.0%. In unit-vector notation, what is the third force if the lemon half (a) is stationary, (b) has the constant velocity v = (12.0î – 15.0)) m/s, and (c) has the varying velocity = (10.0tî - 15.0t)) m/s, where t is time? y (a) Number (b) Number (c) Number î+ î+ î+ i F₁ 又 0₁/ 0₂ x ĴUnits ĴUnits Units <arrow_forwardThe figure shows a container of mass m1 = 1.1 kg connected to a block of mass m2 by a cord looped around a frictionless pulley. The cord and pulley have negligible mass. When the container is released from rest, it accelerates at 1.4 m/s? across the horizontal frictionless surface. What are (a) the tension in the cord and (b) mass m2? (a) Number i Units (b) Number i Unitsarrow_forwardA block of mass m = 10.5 kg rests on an inclined plane with a coefficient of static friction of µ, = 0.11 between the block and the plane. The inclined plane is L = 6.9 m long and it has a height of h = 3.3 m at its tallest point. Write an expression, in terms of 0, the mass m, the coefficient of static friction u, and the gravitational constant g, for the magnitude of the force due to static friction, F, just before the block begins to slide. Will the block slide?arrow_forwardA wedge with mass M rests on a frictionless m horizontal tabletop. A block with mass m is placed on the wedge and a horizontal F force F is applied to the wedge. There M is no friction between the block and the wedge. For a = "/7, what must the magnitude of F be if the block is to remain at a constant height above the tabletop? (g is the magnitude of the gravitational acceleration. Take m = 1 kg, M = 5 kg and g = 10 m/s².) %3D (a) 29 N (b) 35 N (c) 44 N (d) 60 N (e) 104 Narrow_forwardA particle is subjected to the action of two forces : F1 = 41+ 3 + 6 k [ kN ] and F2 = 51-61 -5k [ kN ] . The coordinate direction angle of the resultant force with the X - axis isarrow_forwardTwo boxes are placed on an inclined plane at angle a to the horizontal. The masses of the two boxes are m₁ and m2, and the coefficients of friction are μ₁ and μ2, such that μ₁ > μ₂. What is the force with which the first box acts on the second box? Select the correct answer (m₁ + m₂)² (µ₁ − µ₂) (g cos a)/(m₁ — m₂) ○ (m₁ + m₂)² (μ1 - ₂) (g sin a)/(m₁m₂) ○ (m₁ + m₂)² (µ₁ − µ₂ cos α)g/(m₁m₂) - ○ m₁m₂ (μ₁ −μ₂) (g cos a)/(m₁ + m₂) 21m2 ○ (m² + m²) (µ₁ −— µ₂) (g cos a)/(m₁ – m₂) Your Answer Image size: S M L Maxarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON