Figure 5-19 gives the free-body diagram for four situations in which an object is pulled by several forces across a frictionless floor, as seen from overhead. In which situations does the acceleration
To Find
a) Which situation have x component of acceleration.
b) Which situation have y component of acceleration.
c) Direction of acceleration for each situation.
Answer to Problem 1Q
Solution
a) 2, 3 and 4.
b) 1, 3 and 4.
c) 1 – Along + y-axis, 2- Along + x-axis, 3- In 4th quadrant and 4- In 3rd quadrant.
Explanation of Solution
1) Concept:
Using the concept of net force from the Newton’s second law of motion, we can find the net force acting on the given object for given conditions.
2) Calculations:
a) According to Newton’s second law net force is product of mass and acceleration.
If we want x component acceleration there must be net force in x direction
So, For situation 1
Net force in x direction
So, there is no x component of acceleration.
For Situation 2
Net Force in x direction
As net force is 1N, x component of acceleration is present.
For Situation 3
Net Force in x direction
As net force is 1N, x component of acceleration is present.
For Situation 4
Net Force in x direction
As net force is 1N, x component of acceleration is present.
b)
For situation 1
Net force in y direction
So, there is y component of acceleration.
For Situation 2
Net Force in y direction
As net force is no y component of acceleration is present.
For Situation 3
Net Force in y direction
As net force is -1N, y component of acceleration is present.
For Situation 4
Net Force in y direction
As net force is -4N, y component of acceleration is present.
c) Direction of acceleration is in direction of net force.
For situation 1 there is only net force is only in +y direction so acceleration is also in +y direction.
For situation 2 there is only net force is only +x direction so acceleration is also +x direction.
For situation 3 as there is net force both in x and y direction and total net force is in fourth quadrant.
For situation 4 as there is net force both in x and y direction and total net force is in third quadrant.
Conclusion: Using the equations from the Newton’s second law of motion and vector algebra, it is possible to find the net force acting on the system.
Want to see more full solutions like this?
Chapter 5 Solutions
Fundamentals of Physics Extended
- In attempting to pass the puck to a teammate, a hockey player gives it an initial speed of 2.64 m/s. However, this speed is inadequate to compensate for the kinetic friction between the puck and the ice. As a result, the puck travels only one-half the distance between the players before sliding to a halt. What minimum initial speed should the puck have been given so that it reached the teammate, assuming that the same force of kinetic friction acted on the puck everywhere between the two players? Number i Save for Later Units Attempts: 0 of 3 used Submit Answerarrow_forwardA student, crazed by final exams, uses a force of magnitude 80 N and angle u =70 to push a 5.0 kg block across the ceiling of his room ). If the coefficient of kinetic friction between the block and the ceiling is 0.40, what is the magnitude of the block’s acceleration?arrow_forwardThe diagram shows a block of mass m = 2.50 kg resting on a plane inclined at an angle of 0 = 30° to the horizontal. The coefficient of static friction between the block and the plane is Ustatic = 0.135, and the block is stationary but just on the point of sliding up the slope. 3 X E Fi D maximum magnitude of applied force = 3 N x' mg Fi The diagram shows the four forces acting on the block: an applied force F₁ acting up the slope, the block's weight mg, the normal reaction force N and the force of static friction, Ff. In this case, the force of static friction acts down the slope, opposing the tendency of the block to move up the slope. Find the the maximum magnitude of the applied force F₁ that can be exerted if the block is to remain stationary. Specify your answer by entering a number into the empty box below. 0 N.arrow_forward
- a block of mass m is held stationary on a ramp by the frictional force on it from the ramp. A force , directed up the ramp, is then applied to the block and gradually increased in magnitude from zero. During the increase, what happens to the direction and magnitude of the frictional force on the block?arrow_forwardA mysterious force acts on all particles along a particular line and always points towards a particular point P on the line. The magnitude of the force on a particle increases as the cube of the distance from that point, that is, F∝ r3, if the distance from the P to the position of the particle is r. It has been determined that the constant of proportionality is 0.23 N/m3, i.e. the magnitude of the force on a particle can be written as 0.23r3, when the particle is at a distance r from the force center. Find the magnitude of the potential energy, in joules, of a particle subjected to this force when the particle is at a distance 0.21 m from point P assuming the potential energy to be zero when the particle is at P. PE= ?arrow_forwardThree crates with masses m, = are connected on a rough floor with a coefficient of kinetic friction Hk 12 kg and m2 = m3 = 8 kg %3D %3D =0.15. Under the influence of an external force F, the three crates move to the right with a constant speed v = 1.2 m/s. What is the net force exerted on this system along the x axis, Fnet.x=? Motion my O Cannot be determined O 0.5 N O 0.15 N O 1.2 Narrow_forward
- In the figure, a crate of mass m = 94 kg is pushed at a constant speed up a frictionless ramp (0 = 32°) by a horizontal force F. The positive direction of an x-axis is up the ramp, and the positive direction of a y-axis is perpendicular to the ramp. (a) What is the magnitude of F? (b) What is the magnitude of the normal force on the crate? (a) Number i (b) Number i Units Units m ◆arrow_forwardA person pushes a box of mass m= 25 kg in a straight line along a rough floor. The applied force F has magnitude 85 N and acts downward at an angle 0 = 10° with respect to the horizontal, as shown below. The box is initially at rest at the position x, = 0 m, and it has speed v2 = 0.55 m/s at position x2= 3.50 m. a). Find the coefficient of friction between the box and the floor. b). What is the net work done? c). How much work (magnitude and sign) is done by the friction force? (This problem involves constant acceleration, Newton's Laws, and work!) marrow_forwardIn the figure, a crate of mass m = 77 kg is pushed at a constant speed up a frictionless ramp (0 = 25°) by a horizontal force. The positive direction of an x axis is up the ramp, and the positive direction of a y axis is perpendicular to the ramp. (a) What is the magnitude of F? (b) What is the magnitude of the normal force on the crate? (a) Number i (b) Number i Units Units ‒‒‒‒‒arrow_forward
- the coefficient of kinetic friction between the block and inclined plane is 0.20, and angle u is 60. What are the (a) magnitude a and (b) direction (up or down the plane) of the block’s acceleration if the block is sliding down the plane? What are (c) a and (d) the direction if the block is sent sliding up the plane?arrow_forwardSplash Mountain at Disney World in Orlando, Florida is one of the steepest water plume rides in the United States. Occupants of the boat fall from a height of 100 feet (3.2 ft = 1 m) down a wet ramp which makes a 45 degree angle with the horizontal. Consider the mass of the boat and its occupants to be 1500 kg. The coefficient of friction between the boat and the ramp is 0.10. Determine the frictional force, the acceleration, the distance traveled along the incline, and the final velocity of the boat at the bottom of the incline. PSYWarrow_forwardA block of mass m = 2.00 kg is released from rest at h = 0.500 m above the surface of a table, at the top of a θ = 30.0° incline shown in the figure below. The frictionless incline is fixed on a table of height H = 2.00 m. a) Determine the acceleration of the block as it slides down the incline. b) What is the velocity of the block as it leaves the incline? c) How far (R) from the table will the block hit the floor? d) What time interval elapses between when the block is released and when it hits the floor? e) Does the mass of the block affect any of the above calculations?arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning