Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 86P
Compute the weight of a 75 kg space ranger (a) on Earth, (b) on Mars, where g = 3.7 m/s2, and (c) in interplanetary space, where g = 0. (d) What is the ranger’s mass at each location?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How much would a 84.4 kg person weigh (a) on Uranus, where the acceleration of gravity is 10.7 m/s²,
and (b) on Earth's Moon, where the acceleration of gravity is 1.63 m/s2?
(a) w =
(b) w =
%3D
For a body at a height of 200m, what is the body's velocity when it reaches the earth's surface and the mass of the body is 25kg
HINT
M.
kg
(a) Find the magnitude of the gravitational force (in N) between a planet with mass 6.50 x 1024
and its moon, with mass 2.55 x 10 kg, if the average distance between their centers is
d= 2.90 x 108 m.
%3D
N
(b) What is the moon's acceleration (in m/s2) toward the planet? (Enter the magnitude.)
m/s?
(c) What is the planet's acceleration (in m/s²) toward the moon? (Enter the magnitude.)
m/s2
Chapter 5 Solutions
Fundamentals of Physics Extended
Ch. 5 - Figure 5-19 gives the free-body diagram for four...Ch. 5 - Two horizontal forces, F1=(3N)i (4N)jandF2=(1N)i...Ch. 5 - In Fig. 5-21, forces F1 and F2 are applied to a...Ch. 5 - At time t = 0, constant F begins to act on a rock...Ch. 5 - Figure 5-22 shows overhead views of four...Ch. 5 - Figure 5-23 shows the same breadbox in four...Ch. 5 - July 17, 1981, Kansas City: The newly opened Hyatt...Ch. 5 - Figure 5-25 gives three graphs of velocity...Ch. 5 - Figure 5-26 shows a train of four blocks being...Ch. 5 - Figure 5-27 shows three blocks being pushed across...
Ch. 5 - A vertical force F is applied to a block of mass m...Ch. 5 - Figure 5-28 shows four choices for the direction...Ch. 5 - Only two horizontal forces act on a 3.0 kg body...Ch. 5 - Two horizontal forces act on a 2.0 kg chopping...Ch. 5 - If the 1 kg standard body has an acceleration of...Ch. 5 - While two forces act on it, a particle is to move...Ch. 5 - GO Three astronauts, propelled by jet backpacks,...Ch. 5 - In a two-dimensional tug-of-war, Alex, Betty, and...Ch. 5 - SSM There are two forces on the 2.00 kg box in the...Ch. 5 - A 2.00 kg object is subjected to three forces that...Ch. 5 - A 0.340 kg particle moves in an xy plane according...Ch. 5 - GO A 0.150 kg particle moves along an x axis...Ch. 5 - A 2.0 kg particle moves along an x axis, being...Ch. 5 - GO Two horizontal forces F1 and F2 act on a 4.0 kg...Ch. 5 - Figure 5-33 shows an arrangement in which four...Ch. 5 - A block with a weight of 3.0 N is at rest on a...Ch. 5 - SSM a An 11.0 kg salami is supported by a cord...Ch. 5 - Some insects can walk below a thin rod such as a...Ch. 5 - SSM WWW In Fig. 5-36, let the mass of the block be...Ch. 5 - In April 1974, John Massis of Belgium managed to...Ch. 5 - SSM A 500 kg rocket sled can be accelerated at a...Ch. 5 - A car traveling at 53 km/h hits a bridge abutment....Ch. 5 - A constant horizontal force Fa pushes a 2.00 kg...Ch. 5 - A customer sits in an amusement park ride in which...Ch. 5 - Tarzan, who weighs 820 N, swings from a cliff at...Ch. 5 - 24 There are two horizontal forces on the 2.0 kg...Ch. 5 - Sunjamming. A sun yacht is a spacecraft with a...Ch. 5 - The tension at which a fishing line snaps is...Ch. 5 - SSM An electron with a speed of 1.2 107 m/s moves...Ch. 5 - A car that weighs 1.30 104 N is initially moving...Ch. 5 - A firefighter who weighs 712 N slides down a...Ch. 5 - The high-speed winds around a tornado can drive...Ch. 5 - SSM WWW A block is projected up a frictionless...Ch. 5 - Figure 5-39 shows an overhead view of a 0.0250 kg...Ch. 5 - An elevator cab and its load have a combined mass...Ch. 5 - GO In Fig. 5-40, a crate of mass m = 100 kg is...Ch. 5 - The velocity of a 3.00 kg particle is given by...Ch. 5 - Holding on to a towrope moving parallel to a...Ch. 5 - A 40 kg girl and an 8.4 kg sled are on the...Ch. 5 - A 40 kg skier skis directly down a frictionless...Ch. 5 - ILW A sphere of mass 3.0 104 kg is suspended from...Ch. 5 - GO A dated box of dates, of mass 5.00 kg, is sent...Ch. 5 - Using a rope that will snap if the tension in it...Ch. 5 - GO In earlier days, horses pulled barges down...Ch. 5 - SSM In Fig. 5-43, a chain consisting of five...Ch. 5 - A lamp hangs vertically from a cord in a de...Ch. 5 - An elevator cab that weighs 27.8 kN moves upward....Ch. 5 - An elevator cab is pulled upward by a cable. The...Ch. 5 - GO The Zacchini family was renowned for their...Ch. 5 - GO In Fig. 5-44, elevator cabs A and B are...Ch. 5 - In Fig. 5-45, a block of mass m = 5.00 kg is...Ch. 5 - GO Fig. 5-46, three ballot boxes are connected by...Ch. 5 - GO Figure 5-47 shows two blocks connected by a...Ch. 5 - An 85 kg man lowers himself to the ground from a...Ch. 5 - In Fig. 5-48, three connected blocks are pulled to...Ch. 5 - GO Figure 5-49 shows four penguins that are being...Ch. 5 - SSM ILW WWW Two blocks are in contact on a...Ch. 5 - GO In Fig. 5-51a, a constant horizontal force Fa...Ch. 5 - ILW A block of mass m1 = 3.70 kg on a frictionless...Ch. 5 - Figure 5-53 shows a man sitting in a bosuns chair...Ch. 5 - SSM A 10 kg monkey climbs up a massless rope that...Ch. 5 - Figure 5-45 shows a 5.00 kg block being pulled...Ch. 5 - SSM ILW A hot-air balloon of mass M is descending...Ch. 5 - In shot putting, many athletes elect to launch the...Ch. 5 - GO Figure 5-55 gives, as a function of time t, the...Ch. 5 - GO Figure 5-56 shows a box of mass m2 = 1.0 kg on...Ch. 5 - GO Figure 5-47 shows Atwoods machine, in which two...Ch. 5 - GO Figure 5-57 shows a section of a cable-car...Ch. 5 - Figure 5-58 shows three blocks attached by cords...Ch. 5 - A shot putter launches a 7.260 kg shot by pushing...Ch. 5 - In Fig. 5-59, 4.0 kg block A and 6.0 kg block B...Ch. 5 - An 80 kg man drops to a concrete patio from a...Ch. 5 - SSM Figure 5-60 shows a box of dirty money mass m1...Ch. 5 - Three forces act on a particle that moves with...Ch. 5 - SSM In Fig. 5-61, a tin of antioxidants m1 = 1.0...Ch. 5 - The only two forces acting on a body have...Ch. 5 - Figure 5-62 is an overhead view of a 12 kg tire...Ch. 5 - A block of mass M is pulled along a horizontal...Ch. 5 - SSM A worker drags a crate across a factory floor...Ch. 5 - In Fig. 5-64, a force F of magnitude 12 N is...Ch. 5 - A certain particle has a weight of 22 N at a point...Ch. 5 - An 80 kg person is parachuting and experiencing a...Ch. 5 - A spaceship lifts off vertically from the Moon,...Ch. 5 - In the overhead view of Fig. 5-65, five forces...Ch. 5 - SSM A certain force gives an object of mass m1 an...Ch. 5 - Prob. 84PCh. 5 - A 52 kg circus performer is to slide down a rope...Ch. 5 - Compute the weight of a 75 kg space ranger a on...Ch. 5 - An object is hung from a spring balance attached...Ch. 5 - Imagine a landing craft approaching the surface of...Ch. 5 - A 1400 kg jet engine is fastened to the fuselage...Ch. 5 - An interstellar ship has a mass of 1.20 106 kg...Ch. 5 - SSM A motorcycle and 60.0 kg rider accelerate at...Ch. 5 - Prob. 92PCh. 5 - SSM Figure 5-66a shows a mobile hanging from a...Ch. 5 - For sport, a 12 kg armadillo runs onto a large...Ch. 5 - Suppose that in Fig. 5-12, the masses of the...Ch. 5 - A nucleus that captures a stray neutron must bring...Ch. 5 - If the 1 kg standard body is accelerated by only...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between the concepts of sexual differentiation and sex determination.
Concepts of Genetics (12th Edition)
Modified True/False 6. __________ Halophiles inhabit extremely saline habitats, such as the Great Salt Lake.
Microbiology with Diseases by Body System (5th Edition)
How does an obligate aerobe differ from a facultative aerobe?
Brock Biology of Microorganisms (15th Edition)
What global policy changes and what individual choices can help us sustain the planet that sustains us?
Biology: Life on Earth with Physiology (11th Edition)
Choose the best answer to each of the following. Explain your reasoning. The luminosity of a quasar is generate...
Cosmic Perspective Fundamentals
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) Find the magnitude of the gravity force between a planet with mass 5.98 1024 kg and its moon, with mass 7.36 1022 kg, if the average distance between them is 3.84 108 m. (b) What is the acceleration of the moon toward the planet? (c) What is the acceleration of the planet toward the moon? (See Section 7.5.)arrow_forwardThe values of gravitational acceleration at the surfaces of Jupiter, Pluto, and the sun are 23.12 m/s, 0.72 m/s, and 273.98 m/s, respectively. Determine your weight at each of these locations in both SI and US customary units. Assume no loss of mass results from the extreme conditions.arrow_forwardConsider a hypothetical planet with a mass equal to half that of Earth and radius is one-third that of Earth. If g is the acceleration due to gravity on Earth, the acceleration due to gravity on the planet will be: A) (1/2)g B) (9/2)g C) (5/2)g D) (3/2)garrow_forward
- A “doomsday” asteroid with a mass of 1.0x1010 kg is hurtling through space. Unless the asteroid’s speed is changed by about 0.20 cm/s it will collide with Earth and cause tremendous damage. Researchers suggest that a small “space tug” sent to the asteroid’s surface could exert a gentle constant force of 2.5 N. For how long must this force act?arrow_forward(a) Find the magnitude of the gravitational force (in N) between a planet with mass 7.25 ✕ 1024 kg and its moon, with mass 2.30 ✕ 1022 kg, if the average distance between their centers is 2.10 ✕ 108 m. N (b) What is the moon's acceleration (in m/s2) toward the planet? (Enter the magnitude.) m/s2 (c) What is the planet's acceleration (in m/s2) toward the moon? (Enter the magnitude.) m/s2arrow_forwardThe International Space Station (ISS) orbits the Earth at an altitude (distance above the surface of the Earth) of 408 km, conducting various experiments in a "weightless" environment. Consider the force(s) acting on the ISS and write a simplified equation relating its force(s) to speed. Air resistance is negligible. (HINT: The centripetal force is equal to the net inward force on an object. You are being asked to write an equation to find speed.)arrow_forward
- Suppose you can communicate with the inhabitants of a planet in another solar system. They tell you that on their planet, whose diameter and mass are 5.0 × 103 km and 3.6 × 1023 kg , respectively, the record for the high jump is 2.0 m. Given that this record is close to 2.4 m on Earth, what would you conclude about your extraterrestrial friends’ jumping ability?arrow_forwardA certain particle has a weight of 22 N at a point where g = 9.8 m/s2.What are its (a) weight and (b) mass at a point where g = 4.9 m/s2? What are its (c) weight and (d) mass if it is moved to a point in space where g = 0?arrow_forwardA "doomsday" asteroid with a mass of 1.0 × 1010 kg is hurtling through space. Unless the asteroid's speed is changed by about 0.25 cm/s, it will collide with Earth and cause tremendous damage. Researchers suggest that a small "space tug" sent to the asteroid's surface could exert a gentle constant force of 2.4 N . For how long must this force act?arrow_forward
- A 1,684-kg car starts from rest at the top of a driveway 6.3 m long that is sloped at an angle of 31 degrees with the horizontal. If an average friction force of 2,622 N impedes the motion of the car, find the speed (in m/s) of the car at the bottom of the driveway. Use the approximation that g 10 m/s2. Answer: m/s (round to the nearest hundredth)arrow_forwardA 1000 kg rocket is drifting in space and it will crash into the surface of a Venus. What is the gravitational force pulling the rocket into Venus when the rocket is 10^9 km away from Venus? Assume the mass of earth is 6 × 10^24 kg.arrow_forwardThe tallest spot on Earth is Mt. Everest, which is 8850 m above sea level. If the radius of Earth to sea level is 6369 km, how much does the gravitational field strength change between the sea level value at that location (9.826 N/kg) and the top of Mt. Everest? 0.038 * N/kgarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Gravitational Force (Physics Animation); Author: EarthPen;https://www.youtube.com/watch?v=pxp1Z91S5uQ;License: Standard YouTube License, CC-BY