Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 40P
GO A dated box of dates, of mass 5.00 kg, is sent sliding up a frictionless ramp at an angle of θ to the horizontal. Figure 5-41 gives, as a function of time t, the component vx of the box’s velocity along an x axis that extends directly up the ramp. What is the magnitude of the normal force on the box from the ramp?
Figure 5.41 Problem 40.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A dated box of dates, of mass 7.1 kg, is sent sliding up a frictionless ramp at an angle of θ to the horizontal. The figure here gives, as a function of time t, the component vx of the box's velocity along an x axis that extends directly up the ramp. What is the magnitude of the normal force on the box from the ramp?
A dated box of dates, of mass 4.2 kg, is sent sliding up a frictionless ramp at an angle of 0 to the horizontal. The figure here gives, as a
function of time t, the component vx of the box's velocity along an x-axis that extends directly up the ramp. What is the magnitude of
the normal force on the box from the ramp?
Number
vx (m/s)
4
2
-2
T
Unit
0
t(s)
A dated box of dates, of mass 5.00 kg, is sent sliding up a frictionless ramp at an angle of to the horizontal as a function of time t, the component vx of the box’s velocity along an x axis that extends directly up the ramp.What is the magnitude of the normal force on the box from the ramp?
Chapter 5 Solutions
Fundamentals of Physics Extended
Ch. 5 - Figure 5-19 gives the free-body diagram for four...Ch. 5 - Two horizontal forces, F1=(3N)i (4N)jandF2=(1N)i...Ch. 5 - In Fig. 5-21, forces F1 and F2 are applied to a...Ch. 5 - At time t = 0, constant F begins to act on a rock...Ch. 5 - Figure 5-22 shows overhead views of four...Ch. 5 - Figure 5-23 shows the same breadbox in four...Ch. 5 - July 17, 1981, Kansas City: The newly opened Hyatt...Ch. 5 - Figure 5-25 gives three graphs of velocity...Ch. 5 - Figure 5-26 shows a train of four blocks being...Ch. 5 - Figure 5-27 shows three blocks being pushed across...
Ch. 5 - A vertical force F is applied to a block of mass m...Ch. 5 - Figure 5-28 shows four choices for the direction...Ch. 5 - Only two horizontal forces act on a 3.0 kg body...Ch. 5 - Two horizontal forces act on a 2.0 kg chopping...Ch. 5 - If the 1 kg standard body has an acceleration of...Ch. 5 - While two forces act on it, a particle is to move...Ch. 5 - GO Three astronauts, propelled by jet backpacks,...Ch. 5 - In a two-dimensional tug-of-war, Alex, Betty, and...Ch. 5 - SSM There are two forces on the 2.00 kg box in the...Ch. 5 - A 2.00 kg object is subjected to three forces that...Ch. 5 - A 0.340 kg particle moves in an xy plane according...Ch. 5 - GO A 0.150 kg particle moves along an x axis...Ch. 5 - A 2.0 kg particle moves along an x axis, being...Ch. 5 - GO Two horizontal forces F1 and F2 act on a 4.0 kg...Ch. 5 - Figure 5-33 shows an arrangement in which four...Ch. 5 - A block with a weight of 3.0 N is at rest on a...Ch. 5 - SSM a An 11.0 kg salami is supported by a cord...Ch. 5 - Some insects can walk below a thin rod such as a...Ch. 5 - SSM WWW In Fig. 5-36, let the mass of the block be...Ch. 5 - In April 1974, John Massis of Belgium managed to...Ch. 5 - SSM A 500 kg rocket sled can be accelerated at a...Ch. 5 - A car traveling at 53 km/h hits a bridge abutment....Ch. 5 - A constant horizontal force Fa pushes a 2.00 kg...Ch. 5 - A customer sits in an amusement park ride in which...Ch. 5 - Tarzan, who weighs 820 N, swings from a cliff at...Ch. 5 - 24 There are two horizontal forces on the 2.0 kg...Ch. 5 - Sunjamming. A sun yacht is a spacecraft with a...Ch. 5 - The tension at which a fishing line snaps is...Ch. 5 - SSM An electron with a speed of 1.2 107 m/s moves...Ch. 5 - A car that weighs 1.30 104 N is initially moving...Ch. 5 - A firefighter who weighs 712 N slides down a...Ch. 5 - The high-speed winds around a tornado can drive...Ch. 5 - SSM WWW A block is projected up a frictionless...Ch. 5 - Figure 5-39 shows an overhead view of a 0.0250 kg...Ch. 5 - An elevator cab and its load have a combined mass...Ch. 5 - GO In Fig. 5-40, a crate of mass m = 100 kg is...Ch. 5 - The velocity of a 3.00 kg particle is given by...Ch. 5 - Holding on to a towrope moving parallel to a...Ch. 5 - A 40 kg girl and an 8.4 kg sled are on the...Ch. 5 - A 40 kg skier skis directly down a frictionless...Ch. 5 - ILW A sphere of mass 3.0 104 kg is suspended from...Ch. 5 - GO A dated box of dates, of mass 5.00 kg, is sent...Ch. 5 - Using a rope that will snap if the tension in it...Ch. 5 - GO In earlier days, horses pulled barges down...Ch. 5 - SSM In Fig. 5-43, a chain consisting of five...Ch. 5 - A lamp hangs vertically from a cord in a de...Ch. 5 - An elevator cab that weighs 27.8 kN moves upward....Ch. 5 - An elevator cab is pulled upward by a cable. The...Ch. 5 - GO The Zacchini family was renowned for their...Ch. 5 - GO In Fig. 5-44, elevator cabs A and B are...Ch. 5 - In Fig. 5-45, a block of mass m = 5.00 kg is...Ch. 5 - GO Fig. 5-46, three ballot boxes are connected by...Ch. 5 - GO Figure 5-47 shows two blocks connected by a...Ch. 5 - An 85 kg man lowers himself to the ground from a...Ch. 5 - In Fig. 5-48, three connected blocks are pulled to...Ch. 5 - GO Figure 5-49 shows four penguins that are being...Ch. 5 - SSM ILW WWW Two blocks are in contact on a...Ch. 5 - GO In Fig. 5-51a, a constant horizontal force Fa...Ch. 5 - ILW A block of mass m1 = 3.70 kg on a frictionless...Ch. 5 - Figure 5-53 shows a man sitting in a bosuns chair...Ch. 5 - SSM A 10 kg monkey climbs up a massless rope that...Ch. 5 - Figure 5-45 shows a 5.00 kg block being pulled...Ch. 5 - SSM ILW A hot-air balloon of mass M is descending...Ch. 5 - In shot putting, many athletes elect to launch the...Ch. 5 - GO Figure 5-55 gives, as a function of time t, the...Ch. 5 - GO Figure 5-56 shows a box of mass m2 = 1.0 kg on...Ch. 5 - GO Figure 5-47 shows Atwoods machine, in which two...Ch. 5 - GO Figure 5-57 shows a section of a cable-car...Ch. 5 - Figure 5-58 shows three blocks attached by cords...Ch. 5 - A shot putter launches a 7.260 kg shot by pushing...Ch. 5 - In Fig. 5-59, 4.0 kg block A and 6.0 kg block B...Ch. 5 - An 80 kg man drops to a concrete patio from a...Ch. 5 - SSM Figure 5-60 shows a box of dirty money mass m1...Ch. 5 - Three forces act on a particle that moves with...Ch. 5 - SSM In Fig. 5-61, a tin of antioxidants m1 = 1.0...Ch. 5 - The only two forces acting on a body have...Ch. 5 - Figure 5-62 is an overhead view of a 12 kg tire...Ch. 5 - A block of mass M is pulled along a horizontal...Ch. 5 - SSM A worker drags a crate across a factory floor...Ch. 5 - In Fig. 5-64, a force F of magnitude 12 N is...Ch. 5 - A certain particle has a weight of 22 N at a point...Ch. 5 - An 80 kg person is parachuting and experiencing a...Ch. 5 - A spaceship lifts off vertically from the Moon,...Ch. 5 - In the overhead view of Fig. 5-65, five forces...Ch. 5 - SSM A certain force gives an object of mass m1 an...Ch. 5 - Prob. 84PCh. 5 - A 52 kg circus performer is to slide down a rope...Ch. 5 - Compute the weight of a 75 kg space ranger a on...Ch. 5 - An object is hung from a spring balance attached...Ch. 5 - Imagine a landing craft approaching the surface of...Ch. 5 - A 1400 kg jet engine is fastened to the fuselage...Ch. 5 - An interstellar ship has a mass of 1.20 106 kg...Ch. 5 - SSM A motorcycle and 60.0 kg rider accelerate at...Ch. 5 - Prob. 92PCh. 5 - SSM Figure 5-66a shows a mobile hanging from a...Ch. 5 - For sport, a 12 kg armadillo runs onto a large...Ch. 5 - Suppose that in Fig. 5-12, the masses of the...Ch. 5 - A nucleus that captures a stray neutron must bring...Ch. 5 - If the 1 kg standard body is accelerated by only...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the anatomical position? Why is it important that you learn this position?
Anatomy & Physiology (6th Edition)
1. The lightweight glass sphere in FIGURE Q29.1 hangs by a thread. The north pole of a bar magnet is brought ne...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Plants use the process of photosynthesis to convert the energy in sunlight to chemical energy in the form of su...
Campbell Essential Biology (7th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
Match the following examples of mutagens. Column A Column B ___a. A mutagen that is incorporated into DNA in pl...
Microbiology: An Introduction
What is hemolysis, and how can it occur after a mismatched blood transfusion?
Principles of Anatomy and Physiology
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A dated box of dates, of mass 7.1 kg, is sent sliding up a frictionless ramp at an angle of e to the horizontal. The figure here gives, as a function of time t, the component Vy of the box's velocity along an x axis that extends directly up the ramp. What is the magnitude of the normal force on the box from the ramp? (m/s) 4 2 (s) -2 Number 64.86 Unit the tolerance is +/-2% Click if you would like to Show Work for this question: Open Show Work SHOW HINT e to search 林 10:44 PM ENG 4/4/2021 13 ) 16 17 tohome %23 3 7. W E R. T. 5arrow_forwarda block of mass m is held stationary on a ramp by the frictional force on it from the ramp. A force , directed up the ramp, is then applied to the block and gradually increased in magnitude from zero. During the increase, what happens to the direction and magnitude of the frictional force on the block?arrow_forwardIf the 50-kg crate starts from rest and attains a speed of 6 m/s when it has traveled a distance of 15 m, determine the force P acting on the crate. The coefficient of kinetic friction between the crate and the ground is μ = 0.3.arrow_forward
- To avoid a collision while traveling at a speed of 19 m/sec and descending a steep mountain pass with a grade of 4.3%, a truck locks up all wheels and skids to a stop over a distance of 90 meters. Determine the coefficient of friction between the truck tires and pavement.arrow_forwardA dated box of dates, of mass 7.1 kg, is sent sliding up a frictionless ramp at an angle of 0 to the horizontal. The figure here gives, as a function of time t, the component Vy of the box's velocity along an x axis that extends directly up the ramp. What is the magnitude of the normal force on the box from the ramp? v, (m/s) 2 t (s) -2 Number T66.24 Unit N the tolerance is +/-2%- Click if you would like to Show Work for this question: Open Show Work 11:55 PM A ENG o search 4/4/2021 ASUS pause break insert delete |home prt sc 13) 2#3 backs 9. E R 近 3.arrow_forwardA 12 kg block of ice slides down a ramp 10 m long, inclined at 18° to the horizontal. (a) If the coefficient of kinetic friction between the ice and the ramp is 0.10, what is the acceleration of the block of ice? (b) What is the final speed of the ice at the bottom of the ramp? 18°arrow_forward
- A skateboarder with mass m, = 44 kg is standing at the top of a ramp which is h, = 3.9 m above the ground. The skateboarder then jumps on his skateboard and descends down the ramp. His speed at the bottom of the ramp is v= 6.7 m/s. Part (b) The ramp makes an angle e with the ground, where 0= 30°. Write an expression for the magnitude of the friction force, fr. between the ramp and the skateboarder. F;= cos(e) sin(0) 8 9 HOME d 1 2 3 hy m. + END Vf vol BACKSPACE CLEAR Part (c) When the skateboarder reaches the bottom of the ramp, he continues moving with the speed vonto a flat surface covered with grass. The friction between the grass and the skateboarder brings him to a complete stop after 5.00 m. Calculate the magnitude of the friction force, Fgras: in newtons, between the skateboarder and the grass. Fgras:=arrow_forwardA waitress shoves a ketchup bottle with mass 0.45 kg to her right along a smooth, level lunch counter. The bottle leaves her hand moving at 2.0 m>s, then slows down as it slides because of a constant horizontal friction force exerted on it by the countertop. It slides for 1.0 m before coming to rest. What are the magnitude and direction of the friction force acting on the bottle?arrow_forwardA parachutist whose mass is 85 kg drops from a helicopter hovering 2000 m above the ground and falls toward the ground under the influence of gravity. Assume that the force due to air resistance is proportional to the velocity of the parachutist, with the proportionality constant b 1 = 20 N - sec/m when the chute is closed and b 2 = 90 N - sec/m when the chute is open. If the chute does not open until the velocity of the parachutist reaches 35 m/sec, after how many seconds will the parachutist reach the ground? Assume that the acceleration due to gravity is 9.81 m/ sec ^2arrow_forward
- A skateboarder with mass m, = 44 kg is standing at the top of a ramp which is h, = 3.9 m above the ground. The skateboarder then jumps on his skateboard and descends down the ramp. His speed at the bottom of the ramp is v= 6.7 m/s. Part (b) The ramp makes an angle e with the ground, where 0 = 30°. Write an expression for the magnitude of the friction force, f, between the ramp and the skateboarder. cos(e) sin(e) 8 HOME a 5 6 1 2 3 h, P . END m, + Vf vol BACKSPACE CLEAR Part (c) When the skateboarder reaches the bottom of the ramp, he continues moving with the speed vfonto a flat surface covered with grass. The friction between the grass and the skateboarder brings him to a complete stop after 5.00 m. Calculate the magnitude of the friction force, Fgras; in newtons, between the skateboarder and the grass. Fgrazs =arrow_forwardA 1.5-kg block initially at rest at the top of a 3-m incline with a slope of 30° begins to slide down the incline. The upper half of the incline is frictionless, while the lower half is rough, with a coefficient of kinetic friction μk = 0.3. (a) How fast is the block moving midway along the incline, before entering the rough section? (b) How fast is the block moving at the bottom of the incline?arrow_forwardThe 0.8-kg particle slides across a frictionless horizontal plane. The force P applied to the particle always acts in the x-direction and its magnitude varies with time as shown (Fig. 2) in the P-t diagram. If the velocity of the particle at t= 0 is 3 mps, in the direction shown, determine the speed when t = 5 sec.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Newton's Third Law of Motion: Action and Reaction; Author: Professor Dave explains;https://www.youtube.com/watch?v=y61_VPKH2B4;License: Standard YouTube License, CC-BY