A beam with a T-section is supported and loaded as shown in the figure. The cross section has width b = 2 1/2 in., height c = 3 in., and thickness t = 3/8 in.
- Determine the maximum tensile and compressive stresses in the beam.
(a)
The maximum tensile stress.
The maximum compressive stress.
Explanation of Solution
Given information:
The uniform load is
The following figure shows the free body diagram of the beam.
Figure-(1)
Write the expression for the distance of the neutral axis from the bottom layer.
Here, the width of the beam is
Write the expression for the distance of the neutral axis from the top layer.
Here, the distance of neutral axis from the top layer.
Figure-(2)
Write the expression for the moment of inertia.
Here, the moment of inertia is
Write the expression for the moment equilibrium about
Here, the reaction at point
Write the expression for the force equilibrium in vertical direction.
Here, the reaction at point
Write the expression for the maximum sagging moment at load
Here, the maximum sagging moment is
Write the expression for the maximum hogging moment at point
Here, the maximum hogging moment is
Write the expression for the maximum tensile stress at point
Here, the maximum tensile stress is
Write the expression for the maximum compressive stress at point
Here the maximum compressive stress is
Calculation:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Conclusion:
The maximum tensile stress is
The maximum compressive stress is
(b)
The required depth of the beam.
Answer to Problem 5.5.25P
The required depth of the beam is
Explanation of Solution
Given Information:
The allowable stress in tension is
Write the expression for the maximum tensile stress at point
Write the expression for the distance of the neutral axis from the bottom layer.
Write the expression for the moment of inertia.
Calculation:
Substitute
Substitute
Substitute
. ......(XIII)
Substitute
Substitute
Conclusion:
The required depth of the beam is
Want to see more full solutions like this?
Chapter 5 Solutions
Mechanics of Materials (MindTap Course List)
- The composite beam shown in the figure is simply supported and carries a total uniform load of 40 kN/m on a span length of 4.0 m. The beam is built of a southern pine wood member having cross-sectional dimensions of 150 mm × 250 mm and two brass plates of cross-sectional dimensions 30 mm × 150 mm. Determine the maximum stresses (7b and ctwin the brass and wood, respectively, if the moduli of elasticity are EB= % GPa and Ew= 14 GPa. (Disregard the weight of the beam.) Find the required thickness of the brass plates so that the plate and wood reach their allowable stress values of Eb= 70 MPa and t Ew= 8.5 MPa simultaneously under the maximum moment. What is the maximum moment?arrow_forwardA beam with a wide-flange cross section (see figure) has the following dimensions: h = 120 mm, r = 10 mm, h = 300 mm, and /ij = 260 mm. The beam is simply supported with span length L = 3,0 im A concentrated load P = 120 kN acts at the midpoint of the span. At across section located 1.0 m from the left-hand support, determine the principal stresses tr, and tr2and the maximum shear stress Tmax at each of the following locations: (a) the top of the beam, (b) the top of the web, and (c) the neutral axisarrow_forwardThe cross section of a composite beam made of aluminum and steel is shown in the figure. The moduli of elasticity are TA= 75 GPa and Es= 200 GPa. Under the action of a bending moment that produces a maximum stress of 50 M Pa in the aluminum, what is the maximum stress xs in the steel? If the height of the beam remains at 120 mm and allowable stresses in steel and aluminum are defined as 94 M Pa and 40 M Pa, respectively, what heights h and h. arc required for aluminum and steel, respectively, so that both steel and aluminum reach their allowable stress values under the maximum moment?arrow_forward
- A wood beam reinforced by an aluminum channel section is shown in the figure. The beam has a cross section of dimensions 150 mm x 250 mm, and the channel has a uniform thickness of 6.5 mm. If the allowable stresses in the wood and aluminum are 8 M Pa and 38 M Pa, respectively, and if their moduli of elasticity are in the ratio 1 to 6, what is the maximum allowable bending moment for the beam?arrow_forwardA simple beam of span length 3.2 m carries a uniform load of intensity 48 kN/m, The cross section of the beam is a hollow box with wood flanges and steel side plates, as shown in the figure. The wood flanges are 75 mm x 100 mm in cross section, and the steel plates are 300 mm deep. What is the required thickness t of the steel plates if the allowable stresses are 120 M Pa for the steel and 6,5 M Pa for the wood? (Assume that the moduli of elasticity for the steel and wood are 210 GPa and 10 GPa, respectively, and disregard the weight of the beam.)arrow_forwardA canti lever beam A B of a n isosceles t rapezoi-dal cross section has a length L = 0.8 m, dimensions bx= 80 mm and b2= 90 mm, and height h = 110 mm (see figure). The beam is made of brass weighing 85 kN/m3. Determine the maximum tensile stress asand maximum compressive stressarrow_forward
- A simply supported wide-flange beam of span length L carries a vertical concentrated load P acting through the centroid Cat the midpoint of the span (see figure). The beam is attached to supports inclined at an angle « to the horizontal. Determine the orientation of the neutral axis and calculate the maximum stresses at the outside corners of the cross section (points A, B. ZX and E) due to the load P. Data for the beam are W 250 x 44,8 section, L = 3.5 m, P = 18 kN, and a = 26,57 Note: See Table F-l(b) of Appendix F for the dimensions and properties of the beam.arrow_forwardA W 200 x 41.7 wide-flange beam (see Table F-l(b), Appendix F) is simply supported with a span length of 2.5 m (see figure). The beam supports a concentrated load of 100 kN at 0.9 m from support B. At a cross section located 0,7 m from the left-hand support, determine the principal stresses tr, and 2and the maximum shear stress rnMJt at each of the following locations: (a) the top of the beam, (b) the top of the web, and (c) the neutral axis,arrow_forwardThe Z-section of Example D-7 is subjected to M = 5 kN · m, as shown. Determine the orientation of the neutral axis and calculate the maximum tensile stress c1and maximum compressive stress ocin the beam. Use the following numerical data: height; = 200 mm, width ft = 90 mm, constant thickness a = 15 mm, and B = 19.2e. Use = 32.6 × 106 mm4 and I2= 2.4 × 10e mm4 from Example D-7arrow_forward
- A cantilever wood beam with a width b = 100 mm and depth h = 150 mm has a length L = 2 m and is subjected to point load P at mid-span and uniform load q = 15 N/m. (a) If the normal stress trx= 0 at point C, located 120 mm below the top of the beam at the fixed support A, calculate the point load P, Also show the complete state of plane stress on the element at point C (b) Repeat Part a if er = 220 kPa. Assume that element C is a sufficient distance from support A so that stress concentration effects are negligible.arrow_forwardA beam with a wide-flange cross section (see figure) has the following dimensions: b = 5 in., t = 0.5 in,, ft = 12 in., and /?, = 10.5 in. The beam is simply supported with span length L = 10 ft and supports a uniform load q = 6 kips/fL Calculate the principal stresses *rl and and the maximum shear stress t__ at a cross section located [|] JA 3 ft from the left-hand support at each of the following locations: (a) the bottom of the beam, (b) the bottom of the web, and (c) the neutral axisarrow_forwardA W 12 X 14 wide-flange beam (see Table F-l(a), Appendix F) is simply supported with a span length of 120 in. (see figure). The beam supports two anti-symmetrically placed concentrated loads of 7,5 kips each. At a cross section located 20 in. from the right-hand support, determine the principal stresses (7]and (7\ and the maximum shear stress Tmaw at each of the following locations: (a) the top of the beam, (b) the top of the web, and (c) the neutral axis,arrow_forward
- Mechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage Learning