Can a battery that has a voltage be considered a system at equilibrium? How about a dead battery? Justify each conclusion.
Interpretation:
The validation of the given statement that a battery that has voltage can be considered as a system at equilibrium is to be stated. The state of equilibrium for a dead battery is to be predicted. The justification for each conclusion is to be stated.
Concept introduction:
The static equilibrium is defined as a process in which the rate of forward reaction or the rate of backward reaction is zero. On the other hand, in dynamic equilibrium, the rates of forward and backward reaction are equal.
Answer to Problem 5.1E
A battery that has a voltage is not considered as a system at equilibrium because the electrons move from negative terminal to positive terminal. On the other hand, a dead battery is at equilibrium because the electrons do not flow from negative terminal to positive terminal.
Explanation of Solution
The voltage in battery is developed when the flow of electrons takes place from negative electrode to positive electrode. The flow of electrons indicates that a battery that has a voltage is not at equilibrium. However, the voltage in a dead battery is zero. The flow of electrons does not take place from negative to positive electrode in a dead battery. Therefore, a dead battery is at equilibrium.
Hence, a battery that has a voltage is not at equilibrium whereas a dead battery is at equilibrium.
A battery that has a voltage is not considered as a system at equilibrium because the electrons move from negative terminal to positive terminal. On the other hand, a dead battery is at equilibrium because the electrons do not flow from negative terminal to positive terminal.
Want to see more full solutions like this?
Chapter 5 Solutions
Physical Chemistry
- How will you prepare the following buffers? 2.5 L of 1.5M buffer, pH = 10.5 from NH4Cl and NH3arrow_forwardCH₂O and 22 NMR Solvent: CDCl3 IR Solvent: neat 4000 3000 2000 1500 1000 15 [ اند 6,5 9.8 3.0 7.0 6.0 5.0 4.8 3.0 2.0 1.0 9.8 200 100arrow_forwardprotons. Calculate the mass (in grams) of H3AsO4 (MW=141.9416) needed to produce 3.125 x 1026arrow_forward
- Using what we have learned in CHEM 2310 and up through class on 1/31, propose a series of reaction steps to achieve the transformation below. Be sure to show all reagents and intermediates for full credit. You do not need to draw mechanism arrows, but you do need to include charges where appropriate. If you do not put your group name, you will get half credit at most. ? Brarrow_forwardDraw a mechanism for the formation of 2-bromovanillin using bromonium ion as the reactive electrophile.arrow_forwardNonearrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co