The densities of graphite and diamond are
Interpretation:
The pressure required for
Concept introduction:
The change in Gibbs free energy for a reaction when reactants and products are present in their standard states of pressure, forms and concentration is represented by
Answer to Problem 5.35E
The pressure required for
Explanation of Solution
The density of graphite is
The density of diamond is
Graphite and diamond exists in equilibrium as,
The standard Gibbs free energy change for the above reaction is calculated by the formula,
Where,
•
•
The Gibbs free energy of formation of diamond and graphite is
Substitute the value of Gibbs free energy of formation of diamond and graphite in equation (1).
According to the given equation,
The value of
The above equation can also be written as,
According to equation 5.14, the value of
Where,
•
•
Substitute the value of
The molar volume of diamond is calculated by the formula,
Where,
•
•
Substitute the molar mass and density of diamond in above formula.
The molar volume of graphite is calculated by the formula,
Where,
•
•
Substitute the molar mass and density of graphite in above formula.
Substitute equation (4) and equation (5) in equation (3).
Convert
Therefore, the pressure required for
The pressure required for
Want to see more full solutions like this?
Chapter 5 Solutions
Physical Chemistry
- Nonearrow_forwardDraw Newman projects for each of the following molecules with 3 different rotational angles from carbon 2 to carbon 3. Rank your structures from lowest to highest energy. What causes the energy differences? Label the overlap. a. b. Br OH C. Br Brarrow_forwardDraw the stereoisomers of 3,5-diethylcylopentane. Identify the different relationships between each molecules (diasteromers, enantiomers, meso compounds, etc.)arrow_forward
- Is it possible to do the following reduction in one step? If so, add the necessary reagents and catalysts to the reaction arrow. If not, check the box under the drawing area. T G टे 13arrow_forwardPlease correct answer and don't use hand ratingarrow_forward2. Draw mechanisms for the following reactions. mg Et CO₂Hot H30t Et 0arrow_forward
- Please correct answer and don't use hand ratingarrow_forwardConvert the following structures into a chair representation. Then conduct a chair flip. Cl a. b. C\.... оarrow_forwardAktiv Learning App Cengage Digital Learning Part of Speech Table for Assign x o Mail-Karen Ento-Outlook * + app.aktiv.com Your Aktiv Learning trial expires on 02/06/25 at 01:15 PM Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s). Be sure to account for all bond-breaking and bond-making steps. Problem 17 of 30 Drawing Arrows heat 4 O M B D 5x H H Und Settings H Done :0: H Jararrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,