EBK MICROBIOLOGY:W/DISEASES BY BODY...-
5th Edition
ISBN: 9780134608242
Author: BAUMAN
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 5, Problem 21CT
Figure 5.18b illustrates events in aerobic respiration where oxygen acts as the final electron acceptor to yield water. How would the figure be changed to reflect anaerobic respiration?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A student argued that aerobic and anaerobic respiration should produce the same amount of ATP. He reasoned that they both use basically the same process; only the terminal electron acceptor is different. What is the primary error in this student’s argument?
A newly identified bacterium is unable to synthesize ubiquinone. A mobile electron carrier called CXC3 is used as a substitute. From the information provided in the table, calculate the delta G knot prime and the Keq value at 298 K for the redox reaction that occurs in this bacterium’s electron transport chain.
Explain the impact that using CXC 3 instead of ubiquinol will have on ATP production in the cell. How might this cell adapt to this situation?
Complete the table ATP Yield from Anaerobic Respiration (for 1 Glucose Molecule)
Chapter 5 Solutions
EBK MICROBIOLOGY:W/DISEASES BY BODY...-
Ch. 5 - How can oxidation take place in an anaerobic...Ch. 5 - Why do electrons carried by NADH allow for...Ch. 5 - Why does catabolism of amino acids for energy...Ch. 5 - An uninformed student describes the Calvin-Benson...Ch. 5 - Prob. 5TMWCh. 5 - Why is feedback inhibition necessary for...Ch. 5 - Breaks a large molecule into smaller ones a....Ch. 5 - Includes dehydration synthesis reactions a....Ch. 5 - Prob. 3MCCh. 5 - Prob. 4MC
Ch. 5 - Involves the production of cell membrane...Ch. 5 - Includes hydrolytic reactions a. anabolism only b....Ch. 5 - Includes metabolism a. anabolism only b. both...Ch. 5 - Prob. 8MCCh. 5 - A reduced molecule _________. a. has gained...Ch. 5 - Prob. 10MCCh. 5 - Coenzymes are ________. a. types of apoenzymes b....Ch. 5 - Which of the following statements best describes...Ch. 5 - Which of the following does not affect the...Ch. 5 - Most oxidation reactions in bacteria involve the...Ch. 5 - Under ideal conditions, the fermentation of one...Ch. 5 - Under ideal conditions, the complete aerobic...Ch. 5 - Which of the following statements about the...Ch. 5 - Reactions involved in the light-independent...Ch. 5 - The glycolysis pathway is basically __________. a....Ch. 5 - A major difference between anaerobic respiration...Ch. 5 - 1. _______ Occurs when energy from a compound...Ch. 5 - Fill in the Blanks 1. The final electron acceptor...Ch. 5 - Fill in the Blanks 2. Two ATP molecules are used...Ch. 5 - Fill in the Blanks 3. The initial catabolism of...Ch. 5 - Fill in the Blanks 4. ________ is a cyclic series...Ch. 5 - Fill in the Blanks 5. The final electron acceptor...Ch. 5 - Fill in the Blanks 6. Three common inorganic...Ch. 5 - Fill in the Blanks 7. Anaerobic respiration...Ch. 5 - Fill in the Blanks 8. Complete the following...Ch. 5 - Prob. 9FIBCh. 5 - Fill in the Blanks 10 The main coenzymes that...Ch. 5 - VISUALIZE IT! 1 Label the mitochondrion to...Ch. 5 - Label the diagram below to indicate acetyl-CoA,...Ch. 5 - Examine the biosynthetic pathway for the...Ch. 5 - Prob. 1SACh. 5 - Why we enzymes necessary for anabolic reactions to...Ch. 5 - How do organisms control the rate of metabolic...Ch. 5 - How does a nor-competitive inhibitor at a single...Ch. 5 - Explain the mechanism of negative feedback with...Ch. 5 - Facultative anaerobes can live under either...Ch. 5 - How does oxidation of a molecule occur without...Ch. 5 - List at least four groups of microorganisms that...Ch. 5 - Why do we breathe oxygen and give of carbon...Ch. 5 - Why do cyanobacteria and algae take in carbon...Ch. 5 - What happens to the carbon atoms in sugar...Ch. 5 - How do yeast cells make alcohol and cause bread to...Ch. 5 - Where specifically does the most significant...Ch. 5 - Why are vitamins essential metabolic factors for...Ch. 5 - A laboratory scientist notices that a cer1ain...Ch. 5 - Arsenic is a poison that exists in two states in...Ch. 5 - Explain why an excess of all three of the amino...Ch. 5 - Why might an organism that uses glycolysis and the...Ch. 5 - Describe how bacterial fermentation causes milk to...Ch. 5 - Giardia intestinalis and Entamoeba histolytica are...Ch. 5 - Two cultures of a facultative anaerobe are grown...Ch. 5 - What is the maximum number of molecules of ATP...Ch. 5 - In terms of its effects on human metabolism, why...Ch. 5 - Cyanide is a potent poison because it irreversibly...Ch. 5 - How are photophosphorylation and oxidative...Ch. 5 - Members of the pathogenic bacterial genus...Ch. 5 - Compare and contrast aerobic respiration,...Ch. 5 - Scientists estimate that up to one-third of Earths...Ch. 5 - A young student was troubled by the idea that a...Ch. 5 - If a bacterium uses beta-oxidation to catabolize a...Ch. 5 - Some desert rodents rarely have water to drink....Ch. 5 - Prob. 17CTCh. 5 - We have examined the total ATP, NADH, and FADH2...Ch. 5 - Explain why hyperthermophiles do not cause disease...Ch. 5 - In addition to extremes in temperature and pH,...Ch. 5 - Figure 5.18b illustrates events in aerobic...Ch. 5 - Suppose you could insert a tiny pH probe into the...Ch. 5 - Even though Pseudomonas aeruginosa and...Ch. 5 - Photosynthetic organisms are rarely pathogenic....Ch. 5 - Prob. 25CTCh. 5 - A scientist moves a green plant grown in sunlight...Ch. 5 - What class of enzyme is involved in amination...Ch. 5 - Using the following terms, fill in the following...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- In eukaryotes, the net ATP produced from glycolysis to aerobic respiration is 36 while in prokaryotes is 38. Explain why.arrow_forwardWhat is the direct mechanism of ATP synthesis during the electron transport phase of cellular respiration? (what is the potential energy source that drives ATP production?) b) Why is oxygen needed for this phase? c) What is the role of ATP synthasearrow_forwardIn aerobic respiration, why are electrons moved from organic macromolecules to electron carriers like NAD+. More specifically why is this middle man needed. Why can't the organic macromolecules transport the electron itself?arrow_forward
- Explain the following event in cellular respiration by accomplishing the table.arrow_forwardWhy are electron carriers (NAD+/NADH and FAD/FADH2) so important in the process of cellular respiration? A)NADH and FADH2 are major components of the ETC, so without them, there would be no ETC in the cell. B)They deliver electrons to the ETC, which in turn sets up chemiosmosis, where most of the ATP is generated. C)They separate the electrons from the protons so that the protons can be moved out of the mitochondrion. D)The electrons that they carry are able to directly phosphorylate ADP in order to generate the bulk of ATP in the cell. E) They transport protons across the mitochondrial membrane. 14.arrow_forwardWhich mechanisms may be used to reverse a high NADH:NAD+ ratio in the cytosol under anaerobic conditions?arrow_forward
- Indicate whether the statement is true for aerobic respiration, photosynthesis or both: The transfer of electrons via redox reactions is coupled to the movement of protons from one side of the membrane to the other a)Aerobic Respiration b)Photosynthesis c)Botharrow_forwardList examples of terminal electron acceptors used during anaerobic respirationarrow_forwardWhat does the following figure represent? The last steps of anaerobic cellular respiration. b) Oxidative phosphorylation. c) The electron transport chain (ETC) only. d) Chemiosmosis only. e) The light reactions of photosynthesis.arrow_forward
- Photosynthesis and aerobic cellular respiration both rely on electron transport chains to generate ATP. Which of the following does not correctly identify similarities and differences in the ETCs of these processes? a) Electrons delivered to the ETC are used to generate a proton gradient across the membrane b) In photosynthesis, the facilitated diffusion of protons across the membrane generates ATP and glucose molecules; in cellular respiration, this process generates ATP c) In photosynthesis, electrons are delivered to the ETC by NADPH; in cellular respiration, electrons are delivered to the ETC by NADH and FADH2 d) In prokaryotes, active transport moves protons across the cell’s plasma membrane during photosynthesis and cellular respirationarrow_forwardb) Place a 'Yes' or a 'No' in the appropriate boxes that correspond to each listed feature of cellular respiration. You may need to state 'Yes' or 'No' in more than one box in a particular row in some cases. Cellular Respiration Feature Involved in aerobic respiration Occurs in the mitochondrial matrix Pyruvate molecules are produced Acetyl COA combines with a 4 carbon molecule Electrons are passed between protein carriers ATP is produced NAD+ gains hydrogen FADH₂ loses hydrogen Glycolysis Yes / No Krebs Cycle Yes / No Electron Transport chain Yes / Noarrow_forwardFigure 7.11 Dinitrophenol (DNP) is an "uncoupler" that makes the inner mitochondrial membrane "leaky" to protons. It was used until 1938 as a weight- loss drug. What effect would you expect DNP to have on the change in pH across the inner mitochondrial membrane? Why do you think this might be an effective weight-loss drug? Intermembrane space Mitochondrial matrix ATP Synthase ADP Inner mitochondrial membrane ATP Figure 7.11 ATP synthase is a complex, molecular machine that uses a proton (H) gradient to form ATP from ADP and inorganic phosphate (Pi). (Credit: modification of work by Klaus Hoffmeier)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Concepts of BiologyBiologyISBN:9781938168116Author:Samantha Fowler, Rebecca Roush, James WisePublisher:OpenStax CollegeHuman Physiology: From Cells to Systems (MindTap ...BiologyISBN:9781285866932Author:Lauralee SherwoodPublisher:Cengage Learning
Concepts of Biology
Biology
ISBN:9781938168116
Author:Samantha Fowler, Rebecca Roush, James Wise
Publisher:OpenStax College
Human Physiology: From Cells to Systems (MindTap ...
Biology
ISBN:9781285866932
Author:Lauralee Sherwood
Publisher:Cengage Learning
Anaerobic Respiration; Author: Bozeman Science;https://www.youtube.com/watch?v=cDC29iBxb3w;License: Standard YouTube License, CC-BY