Mechanics of Materials (10th Edition)
10th Edition
ISBN: 9780134319650
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.6, Problem 4.83P
The wires AB and AC are made of steel, and wire AD is made of copper. Before the 150-lb force is applied, AB and AC are each 60 in. long and AD is 40 in. long. If the temperature is increased by 80°F, determine the force in each wire needed to support the load. Each wire has a cross-sectional area of 0 0123 in2. Take Est = 29(103) ksi, Ecu = 17(103) ksi, αst = 8(10-6)/°F, αcu = 9.60(10-6)/°F.
Prob. 4–83
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The wires AB and AC are made of steel, and wire AD is made of aluminum. Before the
300 kN force is applied, AB and AC are each 150 mm. long and AD is 100 mm. long. If the
temperature is increased by 30°C, determine the force in each wire needed to support the load.
Take Est =
200 GPa, Eal
= 70 GPa, st =
12 (10") / °C, aal = 23 (10") / °C. Each wire has a
cross-sectional area of 0.02 mm².
B
100 mm
45° 45°
150 mm
150 mm
A
300 kN
In each case, determine the internal normal force between lettered points on the bar. Draw all necessary free-body diagrams.
The collar C is fixed to rod AB using a glued bond that allows a maximum force of 405 N parallel to the axis of the rod. The collar has weight W acting in the negative z direction. Determine the weight W in N of the collar that will cause the glued bond to break as shown in figure.
Chapter 4 Solutions
Mechanics of Materials (10th Edition)
Ch. 4.2 - In each case, determine the internal normal force...Ch. 4.2 - Determine the internal normal force between...Ch. 4.2 - The post weighs 8kN/m. Determine the internal...Ch. 4.2 - The rod is subjected to an external axial force of...Ch. 4.2 - The rigid beam supports the load of 60 kN....Ch. 4.2 - The 20-mm-diameter A-36 steel rod is subjected to...Ch. 4.2 - Segments AB and CD of the assembly are solid...Ch. 4.2 - The 30-mm-diameter A992 steel rod is subjected to...Ch. 4.2 - If the 20-mm-diameter rod is made of A-36 steel...Ch. 4.2 - The 20-mm-diameter 2014-T6 aluminum rod is...
Ch. 4.2 - The 20-mm-diameter 2014-T6 aluminum rod is...Ch. 4.2 - The A992 steel rod is subjected to the loading...Ch. 4.2 - The copper shaft is subjected to the axial loads...Ch. 4.2 - The composite shaft, consisting of aluminum,...Ch. 4.2 - The composite shaft, consisting of aluminum,...Ch. 4.2 - The 2014-T6 aluminium rod has a diameter of 30 mm...Ch. 4.2 - The A-36 steel drill shaft of an oil well extends...Ch. 4.2 - The truss is made of three A-36 steel members,...Ch. 4.2 - The truss is made of three A-36 steel members,...Ch. 4.2 - The assembly consists of two 10-mm diameter red...Ch. 4.2 - The assembly consists of two 10-mm diameter red...Ch. 4.2 - The load is supported by the four 304 stainless...Ch. 4.2 - The load is supported by the four 304 stainless...Ch. 4.2 - The rigid bar is supported by the pin-connected...Ch. 4.2 - The post is made of Douglas fir and has a diameter...Ch. 4.2 - The post is made of Douglas fir and has a diameter...Ch. 4.2 - The coupling rod is subjected to a force of 5 kip....Ch. 4.2 - The pipe is stuck in the ground so that when it is...Ch. 4.2 - The is made of three pin-connected A992 steel...Ch. 4.2 - The linkage is made of three pin connected A992...Ch. 4.2 - The assembly consists of three titanium...Ch. 4.2 - The rigid beam is supported at its ends by two...Ch. 4.2 - The rigid beam is supported at its ends by two...Ch. 4.2 - The steel bar has the original dimensions shown in...Ch. 4.2 - Determine the relative displacement of one end of...Ch. 4.2 - The assembly consists of two rigid bars that are...Ch. 4.2 - The truss consists of three members, each made...Ch. 4.2 - Solve Prob. 426 when the load P acts vertically...Ch. 4.2 - The observation cage C has a weight of 250 kip and...Ch. 4.2 - The steel bar has the original dimensions shown in...Ch. 4.2 - The ball is truncated at its ends and is used to...Ch. 4.5 - The column is constructed from high-strength...Ch. 4.5 - The column is constructed from high-strength...Ch. 4.5 - The A-36 steel pipe has a 6061-T6 aluminum core....Ch. 4.5 - If column AB is made from high strength precast...Ch. 4.5 - If column AB is made from high strength precast...Ch. 4.5 - Determine the support reactions at the rigid...Ch. 4.5 - If the supports at A and C are flexible and have a...Ch. 4.5 - The load of 2000 lb is to be supported by the two...Ch. 4.5 - The load of 2000 lb is to be supported by the two...Ch. 4.5 - The A-36 steel pipe has an outer radius of 20 mm...Ch. 4.5 - The 10-mm-diameter steel bolt is surrounded by a...Ch. 4.5 - The 10-mm-diameter steel bolt is surrounded by a...Ch. 4.5 - The assembly consists of two red brass C83400...Ch. 4.5 - The rigid beam is supported by the three suspender...Ch. 4.5 - The bolt AB has a diameter of 20 mm and passes...Ch. 4.5 - If the gap between C and the rigid wall at D is...Ch. 4.5 - The support consists of a solid red brass C83400...Ch. 4.5 - If there are n fibers, each having a...Ch. 4.5 - The rigid bar is pinned at A and supported by two...Ch. 4.5 - The rigid bar is pinned at A and supported by two...Ch. 4.5 - The rigid bar is pinned at A and supported by two...Ch. 4.5 - The rigid bar is pinned at A and supported by two...Ch. 4.5 - The 2014-T6 aluminum rod AC is reinforced with the...Ch. 4.5 - The 2014-T6 aluminum rod AC is reinforced with the...Ch. 4.5 - The three suspender bars are made of A992 steel...Ch. 4.5 - The three A-36 steel wires each have a diameter of...Ch. 4.5 - The A-36 steel wires AB and AD each have a...Ch. 4.5 - The post is made from 6061-T6 aluminum and has a...Ch. 4.5 - The post is made from 6061-T6 aluminum and has a...Ch. 4.5 - The bracket is held to the wall using three A-36...Ch. 4.5 - The bracket is held to the wall using three A-36...Ch. 4.5 - If each of the posts has an unloaded length of 1 m...Ch. 4.5 - The rigid bar is supported by the two short white...Ch. 4.5 - The assembly consists of two posts AB and CD each...Ch. 4.5 - The assembly consists of two posts AB and CD each...Ch. 4.5 - The assembly consists of two posts AB and CD each...Ch. 4.5 - The wheel is subjected to a force of 18 kN from...Ch. 4.6 - The C83400-red-brass rod AB and 2014-T6- aluminum...Ch. 4.6 - The assembly has the diameters and material...Ch. 4.6 - The rod is made of A992 steel and has a diameter...Ch. 4.6 - The two cylindrical rod segments are fixed to the...Ch. 4.6 - The two cylindrical rod segments are fixed to the...Ch. 4.6 - The pipe is made of A992 steel and is connected to...Ch. 4.6 - The bronze C86100 pipe has an inner radius of 0.5...Ch. 4.6 - The 40-ft-long A-36 steel rails on a train track...Ch. 4.6 - The device is used to measure a change in...Ch. 4.6 - The bar has a cross-sectional area A, length L,...Ch. 4.6 - When the temperature is at 30C, the A-36 steel...Ch. 4.6 - When the temperature is at 30C, the A-36 steel...Ch. 4.6 - When the temperature is at 30C, the A-36 steel...Ch. 4.6 - The 50-mm-diameter cylinder is made from Am...Ch. 4.6 - The 50-mm-diameter cylinder is made from Am...Ch. 4.6 - The wires AB and AC are made of steel, and wire AD...Ch. 4.6 - The cylinder CD of the assembly is heated from T1...Ch. 4.6 - The cylinder CD of the assembly is heated from T1=...Ch. 4.6 - The metal strap has a thickness t and width w and...Ch. 4.9 - Determine the maximum normal stress developed in...Ch. 4.9 - If the allowable normal stress for the bar is...Ch. 4.9 - The steel bar has the dimensions shown. Determine...Ch. 4.9 - The A-36 steel plate has a thickness of 12 mm. If...Ch. 4.9 - Determine the maximum axial force P that can be...Ch. 4.9 - Determine the maximum normal stress developed in...Ch. 4.9 - The member is to be made from a steel plate that...Ch. 4.9 - The resulting stress distribution along section AB...Ch. 4.9 - The resulting stress distribution along section AB...Ch. 4.9 - Prob. 4.96PCh. 4.9 - The weight is suspended from steel and aluminum...Ch. 4.9 - The bar has a cross-sectional area of 0.5 in2 and...Ch. 4.9 - The distributed loading is applied to the rigid...Ch. 4.9 - The distributed loading is applied to the rigid...Ch. 4.9 - The rigid lever arm is supported by two A-36 steel...Ch. 4.9 - The rigid lever arm is supported by two A-36 steel...Ch. 4.9 - The 300-kip weight is slowly set on the top of a...Ch. 4.9 - The rigid beam is supported by three 25-mm...Ch. 4.9 - The rigid beam is supported by three 25-mm...Ch. 4.9 - The rigid beam is supported by the three posts A,...Ch. 4.9 - The rigid beam is supported by the three posts A,...Ch. 4.9 - The bar having a diameter of 2 in. is fixed...Ch. 4.9 - Determine the elongation of the bar in Prob.4108...Ch. 4.9 - The rigid beam is supported by three A-36 steel...Ch. 4 - The assembly consists of two A992 steel bolts AB...Ch. 4 - The assembly shown consists of two A992 steel...Ch. 4 - The rods each have the same 25-mm diameter and...Ch. 4 - Two A992 steel pipes, each having a...Ch. 4 - The force P is applied to the bar, which is made...Ch. 4 - The 2014-T6 aluminum rod has a diameter of 0.5 in....Ch. 4 - The 2014-T6 aluminum rod has a diameter of 0.5 in....Ch. 4 - The rigid link is supported by a pin at A and two...Ch. 4 - The joint is made from three A992 steel plates...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2:28 Today Edit 2:26 PM Problem Number 2: A horizontal boom 11.5 M in length, AE is supported by guy wires from A to B,C and D. If the tensile load in AD = 360 KN, find the forces in AC and AB so that the resultant force on A will be horizontal. What is the resultant force of the 3-force system? в м Y+ D SM 2.5M 8M 3.OM 1.5M 1.5M 6M 6M A Z+ 10M 1.5M X+arrow_forward* Q1 Q1: Draw the free-body diagram for the following member 500 lb 5 4 600 lb · ft 3 A -5 ft -5 ft -5 ftarrow_forwardThe metal plate is held by two cables as shown in the following figure. If the force of each cable acting at A is FAB = 900 Ib and FAc = 200 lb. Determine the magnitude of the resultant force of the two forces acting at A. 8 ft- 8 ft 6 ft B Y FAC FAR A(10;6;0) Select one: a. FR = 1010 lb b. FR = 780.64 lb c. FR = 1100 lb d. FR = 1001.72arrow_forward
- The central bar CD of the assembly is heated from 30 ° C to 180 ° C by means of an electrical resistance. Also the two bars AB and EF are heated from 30 ° C to 50 ° C. At the lower temperature of 30 ° C, the space between C and the rigid bar is 0.7 mm. Determine the force in bars AB and EF caused by the increase in temperature. Bars AB and EF are made of steel and each has a cross-sectional area of 125 mm ^ 2; CD is aluminum with a cross-sectional area of 375 mm ^ 2. Steel = 200GP; Ealuminum = 70 GPa; alpha steel = 12 X10 ^ -6 (1 / ºC); alpha aluminum = 23 X10 ^ -6 (1 / ° C).arrow_forwardThe cable BC carries a tension of 750 N. Write the force in the cable as a vecto 12m- C 0.7 m 1.6 m.arrow_forwardFishing line with a tensile strength of 25 lbs is used at B to fasten 2 members together as shown. Find the maximum force F that can be supported, given:L1 = 2 in, L2 = 4 in L3 = 6 in, L4 = 5 inarrow_forward
- The cable carrying 60-lb loads at B and C is held in the position shown by the horizontal force P = 80 lb applied at A. Determine the following: Determine the force in segment BC. Determine the force in segment CD. Determine the value of h. Determine the smallest measure of angle ?BCx segment BC makes with the horizontal. Determine the smallest measure of angle ?CDx segment CD makes with the horizontal.arrow_forwardThe guy wires AB and AC are attached to the top of the transmission tower. The tension in cable AB is 7.2 kN. Determine the required tension T in cable AC such that the net effect of the two cables is a downward force at point A. Determine the magnitude R of this downward force. Assume a = 30 m, b = 38 m, c = 26 m, and d = 33 m. B) Answers: T = i kN %3D R = i kNarrow_forwardQ2 Two members AB and AC are made of material with E= 102 Gpa and each member has cross sectional area of A= 489 mm2. The members are used to support bar BC. If P=811 N, L1= 202 mm , L2= 313 mm and L3= 443 mm . Answer the following questions. D L3 E B L1 L2 The tension in member AB= Your answer The tension in member CDDarrow_forward
- Be careful, you have only one question, for this problem. The pulling force is P = 545N. The direction of the rope B is defined by the angle 0-35deg. The position of the point D is (1.3,-2.3.3.1) Xo D Zo Y X P What is the tension Tc in N? Give your answer as an integer. o B -yarrow_forwardDetermine the tensile force in all cables. The plate weighs 150 kg. (Answer: FB = 858 N, FC = 0 and FD = 858 N)arrow_forward3. Three bars each made of different materials are connected together and placed between two walls when the temperature is T₁ = 12 degrees Celsius. Determine the force exerted on the rigid supports when the temperature becomes T₂ = 70 degrees Celsius. The material properties and cross-sections are given in the figure. Steel Est = 200 GPa Cst = 12(10-6)/°C Ast = 200 mm2 300 mm Brass Ebr = 100 GPa abr=21(106)/°C Abr = 450 mm² Copper Ecu = 120 GPa acu = 17(10-6)/°C 515 mm² Acu 200 mm- 100 mmarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license