Concept explainers
The two cylindrical rod segments are fixed to the rigid walls such that there is a gap of 0.01 in. between them when T1 = 60°F. What larger temperature T2 is required in order to just close the gap? Each rod has a diameter of 1.25 in. Determine the average normal stress in each rod if T2 = 300°F. Take αal =13(10-6)/°F, Eal =10(103) ksi, (σγ)al =40 ksi, α cu =9.4(10-6)/°F, Ecu = 15(103) ksi, and (σγ)cu=50 ksi.
Trending nowThis is a popular solution!
Chapter 4 Solutions
Mechanics of Materials (10th Edition)
Additional Engineering Textbook Solutions
HEAT+MASS TRANSFER:FUND.+APPL.
Management Information Systems: Managing The Digital Firm (16th Edition)
Starting Out with Python (4th Edition)
Starting Out with C++ from Control Structures to Objects (9th Edition)
Concepts Of Programming Languages
Electric Circuits. (11th Edition)
- The cylindrical tank with a spherical end cap has an outer radius of 2 m and a wall thickness of 50 mm. If the tank is pressurized to 3.5 MPa, determine the longitudinal and circumferential stresses in the cylinder, and the stress in the end cap. (Show free body diagram and complete solution)arrow_forwardThe piston-cylinder assembly above has a wall thickness of 0.125" and an outer radius ro= 2 in. If the internal gauge pressure is 1.2 ksi, determine the maximum normal stress in the piston wall. 18 ksl O9 ksi 36 ksi N/A (this does not meet the criteria of a "thin-walled" pressure vessel)arrow_forwardDetermine the required gap (δ) so that the rails just touch one another when the temperature is increased from Ti = -20F and Tf = 100F Determine the stress in steel rails if the gap is δ = 0.5 in and the temperature is increased from Ti = -20F to Tf = 120F. NOTE: indicate the free body diagram.arrow_forward
- use this values lamp = 81 kg, AB = 5 mm, BC = 8mmarrow_forwardAt room temperature (20°C), a 0.5-mm gap exists between the ends of the rods shown. The temperature eventually reaches a value of 140°C. Determine the normal stress in the aluminum rod. Determine the change in length of the aluminum rod.arrow_forwardThe wires AB and AC are made of steel, and wire AD is made of aluminum. Before the 300 kN force is applied, AB and AC are each 150 mm. long and AD is 100 mm. long. If the temperature is increased by 30°C, determine the force in each wire needed to support the load. Take Est = 200 GPa, Eal = 70 GPa, st = 12 (10") / °C, aal = 23 (10") / °C. Each wire has a cross-sectional area of 0.02 mm². B 100 mm 45° 45° 150 mm 150 mm A 300 kNarrow_forward
- The bar has a cross-sectional area A, length L, modulus of elasticity E, and coefficient of thermal expansion a. The temperature of the bar changes uniformly along its length from TA at A to TB at B so that at any point x alongthe bar T = TA + x(TB - TA)>L. Determine the force the bar exerts on the rigid walls. Initially, no axial force is in the bar and the bar has a temperature of TA.arrow_forwardThe wires AB and AC are made of steel, and wire AD is made of copper. Before the 150-lb force is applied, AB and AC are each 60 in. long and AD is 40 in. long. If the temperature is increased by 80F, determine the force in each wire needed to support the load. Each wire has a cross-sectionalarea of 0.0123 in2. Take Est = 29(10 3) ksi, Ecu = 17(10 3) ksi, fast = 8(10 6)>F, acu = 9.60(10 -6)>F.arrow_forwardAt a temperature of 20 °C there is a gap ∆ = 0.2 mm between the lower end of the brass bar and the slab rigid suspended from the two steel bars. Neglecting the mass of the slab, determine the stress in each bar when the temperature of the assembly rises to 100°C Answer: σsteel = 15.462MPa (t), σbronze= 20.615MPa(c),arrow_forward
- use lamp=81kg, AB=5mm, BC=8mmarrow_forwardAn A-36-steel hoop has an inner diameter of 23.99 in., a thickness of 0.25 in., and a width of 1 in. If it and the 24-in.-diameter A rigid cylinder has a temperature of 65° F, determine the temperature to which the hoop should be heated in order for it to just slip over the cylinder. What is the pressure the hoop exerts on the cylinder, and the tensile stress in the ring when it cools back down to 65° F?arrow_forwardAir is pumped into the steel thin-walled pressure vessel at C. If the ends of the vessel are closed using two pistons connected by a rod AB, determine the increase in the diameter of the pressure vessel when the internal gage pressure is 5 MPa. Also, what is the tensile stress in rod AB if it has a diameter of 100 mm? The inner radius of the vessel is 400 mm, and its thickness is 10 mm. Est = 200 GPa and nst = 0.3.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY