Concept explainers
The 10-mm-diameter steel bolt is surrounded by a bronze sleeve. The outer diameter of this sleeve is 20 mm, and its inner diameter is 10 mm. If the yield stress for the steel is (σγ)st = 640 MPa, and for the bronze (σγ)br = 520 MPa, determine the magnitude of the largest elastic load P that can be applied to the assembly. Est = 200 GPa, Ebr = 100 GPa.
Prob. 4–41
Learn your wayIncludes step-by-step video
Chapter 4 Solutions
Mechanics of Materials (10th Edition)
Additional Engineering Textbook Solutions
Concepts Of Programming Languages
Introduction To Programming Using Visual Basic (11th Edition)
Degarmo's Materials And Processes In Manufacturing
Database Concepts (8th Edition)
Java How to Program, Early Objects (11th Edition) (Deitel: How to Program)
Computer Science: An Overview (13th Edition) (What's New in Computer Science)
- The tension member is fastened together using two bolts, one on each side of the member as shown. Each bolt has a diameter of 0.3 in. Determine the maximum load P that can be applied to the member if the allowable shearstress for the bolts is tallow = 12 ksi and the allowable average normal stress is sallow = 20 ksi.arrow_forwardThe yoke-and-rod connection is subjected to a tensile force P. The end of the 40-mm diameter rod is embedded inside a wall at a length I of 100 mm using epoxy adhesive. If the allowable normal stress for the rods is 60 MPa, the allowable shear stress for the 25- mm diameter pin A is 50 MPa, and the allowable shear stress of the epoxy adhesive is 6 MPa, determine the largest force P that can be applied to the assembly. Note: Show your calculations for all types of stresses in detail. 40 mm 30 mm A 25 mm P.arrow_forwardThe rigid beam is supported by the three suspender bars. Bars AB and EF are made of aluminum and bar CD is made of steel. If each bar has a cross-sectional area of 450 mm2, determine the maximum value of P if the allowable stress is (sallow)st = 200 MPa for the steel and (sallow)al = 150 MPa for the aluminum. Est = 200 GPa, Eal = 70 GPa.arrow_forward
- The rigid bar is pinned at A and supported by two aluminum rods, each having a diameter of 1 in., a modulus of elasticity Eal = 10(103) ksi, and yield stress of (sY)al = 40 ksi. If the bar is initially vertical, determine the displacement of the end B when the force of 20 kip is applied.arrow_forwardThe 10-mm-diameter bolt is made of an aluminum alloy. It fits through a magnesium sleeve that has an inner diameter of 15 mm and an outer diameter of 25 mm. The original lengths of the bolt and sleeve are 80 mm and 50 mm, respectively. If after the nut on the bolt is tightened the tension in the bolt is 10 kN, determine the change in dimension of the cross-section of the bolt and the sleeve. Assume the material at A is rigid. E = 70 GPa, Emg = 45 GPa, Ga = 26 GPa, Gmg = 17 GPa.arrow_forward6.arrow_forward
- The bar is connected to the support using a pin having a diameter of d = 1 in. If the allowable tensile stress for the bar is 1st2allow = 20 ksi, and the allowable bearing stress between the pin and the bar is 1sb2allow = 30 ksi,determine the dimensions w and t so that the gross area of the cross-section is wt = 2 in2 and the load P is a maximum. What is this maximum load? Assume the hole in the bar has the same diameter as the pin.arrow_forwardB D The rods AB and CD are assumed to be pin connected at A and C. If the cable BD and CD are made of a material having of oy = 250 MPa 6 kN 5 kN 4 kN tensile stress determine the minimum diameter for cable AB and CD to avoid deformation. A C - 2 m–→--2 m–+ -3 m- -3 marrow_forwardThe 8-mm-diameter bolt is made of an aluminum alloy. It fits through a magnesium sleeve that has an inner diameter of 12 mm and an outer diameter of 20 mm. If the original lengths of the bolt and sleeve are 80 mm and 50 mm, respectively, determine the strains in the sleeve and the bolt if the nut on the bolt is tightened so that the tension in the bolt is 8 kN. Assume the material at A is rigid. Eal = 70 GPa, Emg = 45 GPa.arrow_forward
- The five-bolt connection shown must support an applied load of P = 370 KN. If the average shear stress in the bolts must be limited to 190 MPa, determine the minimum bolt diameter that may be used in the connection. 30.9 mm O 21.0 mm O 22.3 mm 28.8 mm O 18.7 mmarrow_forwardThe rigid bar is pinned at A and supported by two aluminum rods, each having a diameter of 1 in. a modulus of elasticity Eal = 10(103) ksi, and yield stress of (sY)al = 40 ksi. If the bar is initially vertical, determine the angle of tilt of the bar when the 20-kip load is applied.arrow_forwardThe compound wooden beam is connected together by a bolt at B. Assuming that the connections at A, B, C, and D exert only vertical forces on the beam, determine the required diameter of the bolt at B and the required outer diameter of its washers if the allowable tensile stress for the bolt is 1st2allow = 150 MPa and the allowable bearing stress for the wood is 1sb2allow = 28 MPa. Assume that the hole in the washers has the same diameter as the bolt.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY