Mechanics of Materials (10th Edition)
10th Edition
ISBN: 9780134319650
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 4.2, Problem 4.23P
The steel bar has the original dimensions shown in the figure. If it is subjected to an axial load of 50 kN, determine the change in its length and its new cross-sectional dimensions at section a–a. Est = 200 GPa, Vst = 0.29.
Prob. 4–23
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The assembly consists of three titanium (Ti-6A1-
4V) rods and a rigid bar AC. The cross-section area
of each rod is given in the figure. If a force of 60 kip
is applied o the ring F, determine the horizontal
displacement of point F.
Hint: Refer to the textbook appendix for material
properties.
AEF 2 in² 1 ft
=
60 kip F-2 ft-
2 ft
A
C
6 ft
B
AAB
=
1 in²
E
ACD = 1.5 in²
6 ft
D
The pole is supported by a pin at B and A-36 steel guy wire AC. If the wire has a diameter of
0.2. Modulus of Elasticity of Steel = 200GPA or 29x103 ksi Poisson's ratio of steel=0.321
a. Determine how much the wire stretches when the horizontal force acts on the pole.
3 ft
30
D 2.5 kip
4 ft
B
b. Determine the change in the wire's radius
c. At what angle is the principal stresses on pole BC? Use Mohr's Circle.
d. What is the principal stress in pol BC? Use Mohr's Circle
e. Draw the stresses on a unit element acting on 35-degree clockwise direction of pole BC. Use
Mohr's Circle.
f. What are the principal stresses in point D? Use Mohr's Circle. (answer in ksi)
g. At what angle is the principal stresses acting on point D? Use Mohr 's Circle.
h. Draw the stresses on a unit element acting on 35degree-clockwise direction of point D. Use Mohr's
Circle. (answer in ksi)
The rectangular bar is connected to the support bracket with a 26-mm-diameter pin. The bar width is w=60 mm and the bar thickness
is 15 mm. Each side of the bracket has the same dimensions as the bar. The average shear stress in the pin cannot exceed 120 MPa, the
bearing stress in the bar cannot exceed 120 MPa, and the bearing stress in the bracket cannot exceed 120 MPa. Determine the
maximum value of Pmax that can be supported by the structure.
Answer: Pmax
KN
Chapter 4 Solutions
Mechanics of Materials (10th Edition)
Ch. 4.2 - In each case, determine the internal normal force...Ch. 4.2 - Determine the internal normal force between...Ch. 4.2 - The post weighs 8kN/m. Determine the internal...Ch. 4.2 - The rod is subjected to an external axial force of...Ch. 4.2 - The rigid beam supports the load of 60 kN....Ch. 4.2 - The 20-mm-diameter A-36 steel rod is subjected to...Ch. 4.2 - Segments AB and CD of the assembly are solid...Ch. 4.2 - The 30-mm-diameter A992 steel rod is subjected to...Ch. 4.2 - If the 20-mm-diameter rod is made of A-36 steel...Ch. 4.2 - The 20-mm-diameter 2014-T6 aluminum rod is...
Ch. 4.2 - The 20-mm-diameter 2014-T6 aluminum rod is...Ch. 4.2 - The A992 steel rod is subjected to the loading...Ch. 4.2 - The copper shaft is subjected to the axial loads...Ch. 4.2 - The composite shaft, consisting of aluminum,...Ch. 4.2 - The composite shaft, consisting of aluminum,...Ch. 4.2 - The 2014-T6 aluminium rod has a diameter of 30 mm...Ch. 4.2 - The A-36 steel drill shaft of an oil well extends...Ch. 4.2 - The truss is made of three A-36 steel members,...Ch. 4.2 - The truss is made of three A-36 steel members,...Ch. 4.2 - The assembly consists of two 10-mm diameter red...Ch. 4.2 - The assembly consists of two 10-mm diameter red...Ch. 4.2 - The load is supported by the four 304 stainless...Ch. 4.2 - The load is supported by the four 304 stainless...Ch. 4.2 - The rigid bar is supported by the pin-connected...Ch. 4.2 - The post is made of Douglas fir and has a diameter...Ch. 4.2 - The post is made of Douglas fir and has a diameter...Ch. 4.2 - The coupling rod is subjected to a force of 5 kip....Ch. 4.2 - The pipe is stuck in the ground so that when it is...Ch. 4.2 - The is made of three pin-connected A992 steel...Ch. 4.2 - The linkage is made of three pin connected A992...Ch. 4.2 - The assembly consists of three titanium...Ch. 4.2 - The rigid beam is supported at its ends by two...Ch. 4.2 - The rigid beam is supported at its ends by two...Ch. 4.2 - The steel bar has the original dimensions shown in...Ch. 4.2 - Determine the relative displacement of one end of...Ch. 4.2 - The assembly consists of two rigid bars that are...Ch. 4.2 - The truss consists of three members, each made...Ch. 4.2 - Solve Prob. 426 when the load P acts vertically...Ch. 4.2 - The observation cage C has a weight of 250 kip and...Ch. 4.2 - The steel bar has the original dimensions shown in...Ch. 4.2 - The ball is truncated at its ends and is used to...Ch. 4.5 - The column is constructed from high-strength...Ch. 4.5 - The column is constructed from high-strength...Ch. 4.5 - The A-36 steel pipe has a 6061-T6 aluminum core....Ch. 4.5 - If column AB is made from high strength precast...Ch. 4.5 - If column AB is made from high strength precast...Ch. 4.5 - Determine the support reactions at the rigid...Ch. 4.5 - If the supports at A and C are flexible and have a...Ch. 4.5 - The load of 2000 lb is to be supported by the two...Ch. 4.5 - The load of 2000 lb is to be supported by the two...Ch. 4.5 - The A-36 steel pipe has an outer radius of 20 mm...Ch. 4.5 - The 10-mm-diameter steel bolt is surrounded by a...Ch. 4.5 - The 10-mm-diameter steel bolt is surrounded by a...Ch. 4.5 - The assembly consists of two red brass C83400...Ch. 4.5 - The rigid beam is supported by the three suspender...Ch. 4.5 - The bolt AB has a diameter of 20 mm and passes...Ch. 4.5 - If the gap between C and the rigid wall at D is...Ch. 4.5 - The support consists of a solid red brass C83400...Ch. 4.5 - If there are n fibers, each having a...Ch. 4.5 - The rigid bar is pinned at A and supported by two...Ch. 4.5 - The rigid bar is pinned at A and supported by two...Ch. 4.5 - The rigid bar is pinned at A and supported by two...Ch. 4.5 - The rigid bar is pinned at A and supported by two...Ch. 4.5 - The 2014-T6 aluminum rod AC is reinforced with the...Ch. 4.5 - The 2014-T6 aluminum rod AC is reinforced with the...Ch. 4.5 - The three suspender bars are made of A992 steel...Ch. 4.5 - The three A-36 steel wires each have a diameter of...Ch. 4.5 - The A-36 steel wires AB and AD each have a...Ch. 4.5 - The post is made from 6061-T6 aluminum and has a...Ch. 4.5 - The post is made from 6061-T6 aluminum and has a...Ch. 4.5 - The bracket is held to the wall using three A-36...Ch. 4.5 - The bracket is held to the wall using three A-36...Ch. 4.5 - If each of the posts has an unloaded length of 1 m...Ch. 4.5 - The rigid bar is supported by the two short white...Ch. 4.5 - The assembly consists of two posts AB and CD each...Ch. 4.5 - The assembly consists of two posts AB and CD each...Ch. 4.5 - The assembly consists of two posts AB and CD each...Ch. 4.5 - The wheel is subjected to a force of 18 kN from...Ch. 4.6 - The C83400-red-brass rod AB and 2014-T6- aluminum...Ch. 4.6 - The assembly has the diameters and material...Ch. 4.6 - The rod is made of A992 steel and has a diameter...Ch. 4.6 - The two cylindrical rod segments are fixed to the...Ch. 4.6 - The two cylindrical rod segments are fixed to the...Ch. 4.6 - The pipe is made of A992 steel and is connected to...Ch. 4.6 - The bronze C86100 pipe has an inner radius of 0.5...Ch. 4.6 - The 40-ft-long A-36 steel rails on a train track...Ch. 4.6 - The device is used to measure a change in...Ch. 4.6 - The bar has a cross-sectional area A, length L,...Ch. 4.6 - When the temperature is at 30C, the A-36 steel...Ch. 4.6 - When the temperature is at 30C, the A-36 steel...Ch. 4.6 - When the temperature is at 30C, the A-36 steel...Ch. 4.6 - The 50-mm-diameter cylinder is made from Am...Ch. 4.6 - The 50-mm-diameter cylinder is made from Am...Ch. 4.6 - The wires AB and AC are made of steel, and wire AD...Ch. 4.6 - The cylinder CD of the assembly is heated from T1...Ch. 4.6 - The cylinder CD of the assembly is heated from T1=...Ch. 4.6 - The metal strap has a thickness t and width w and...Ch. 4.9 - Determine the maximum normal stress developed in...Ch. 4.9 - If the allowable normal stress for the bar is...Ch. 4.9 - The steel bar has the dimensions shown. Determine...Ch. 4.9 - The A-36 steel plate has a thickness of 12 mm. If...Ch. 4.9 - Determine the maximum axial force P that can be...Ch. 4.9 - Determine the maximum normal stress developed in...Ch. 4.9 - The member is to be made from a steel plate that...Ch. 4.9 - The resulting stress distribution along section AB...Ch. 4.9 - The resulting stress distribution along section AB...Ch. 4.9 - Prob. 4.96PCh. 4.9 - The weight is suspended from steel and aluminum...Ch. 4.9 - The bar has a cross-sectional area of 0.5 in2 and...Ch. 4.9 - The distributed loading is applied to the rigid...Ch. 4.9 - The distributed loading is applied to the rigid...Ch. 4.9 - The rigid lever arm is supported by two A-36 steel...Ch. 4.9 - The rigid lever arm is supported by two A-36 steel...Ch. 4.9 - The 300-kip weight is slowly set on the top of a...Ch. 4.9 - The rigid beam is supported by three 25-mm...Ch. 4.9 - The rigid beam is supported by three 25-mm...Ch. 4.9 - The rigid beam is supported by the three posts A,...Ch. 4.9 - The rigid beam is supported by the three posts A,...Ch. 4.9 - The bar having a diameter of 2 in. is fixed...Ch. 4.9 - Determine the elongation of the bar in Prob.4108...Ch. 4.9 - The rigid beam is supported by three A-36 steel...Ch. 4 - The assembly consists of two A992 steel bolts AB...Ch. 4 - The assembly shown consists of two A992 steel...Ch. 4 - The rods each have the same 25-mm diameter and...Ch. 4 - Two A992 steel pipes, each having a...Ch. 4 - The force P is applied to the bar, which is made...Ch. 4 - The 2014-T6 aluminum rod has a diameter of 0.5 in....Ch. 4 - The 2014-T6 aluminum rod has a diameter of 0.5 in....Ch. 4 - The rigid link is supported by a pin at A and two...Ch. 4 - The joint is made from three A992 steel plates...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The rectangular bar is connected to the support bracket with a 25-mm-diameter pin. The bar width is w = 65 mm and the bar thickness is 10 mm. Each side of the bracket has the same dimensions as the bar. The average shear stress in the pin cannot exceed 115 MPa, the bearing stress in the bar cannot exceed 120 MPa, and the bearing stress in the bracket cannot exceed 140 MPa. Determine the maximum value of Pmax that can be supported by the structure. Answer: Pmax i kNarrow_forwardThe rectangular bar is connected to the support bracket with a 11-mm-diameter pin. The bar width is w = 60 mm and the bar thickness is 10 mm. Each side of the bracket has the same dimensions as the bar. The average shear stress in the pin cannot exceed 120 MPa, the bearing stress in the bar cannot exceed 120 MPa, and the bearing stress in the bracket cannot exceed 120 MPa. Determine the maximum value of Pmax that can be supported by the structure.arrow_forwardThe rectangular bar is connected to the support bracket with a 27-mm-diameter pin. The bar width is w = 65 mm and the bar thickness is 10 mm. Each side of the bracket has the same dimensions as the bar. The average shear stress in the pin cannot exceed 125 MPa, the bearing stress in the bar cannot exceed 120 MPa, and the bearing stress in the bracket cannot exceed 130 MPa. Determine the maximum value of Pmax that can be supported by the structure. Answer: Pmax= P Mi KNarrow_forward
- The rectangular bar is connected to the support bracket with a 24-mm-diameter pin. The bar width is w = 80 mm and the bar thickness is 20 mm. Each side of the bracket has the same dimensions as the bar. The average shear stress in the pin cannot exceed 125 MPa, the bearing stress in the bar cannot exceed 130 MPa, and the bearing stress in the bracket cannot exceed 130 MPa. Determine the maximum value of Pmax that can be supported by the structure. P Answer: Pmax =arrow_forwardThe solid circular rod has a cross-sectional area of 460 mm². It is subjected to a uniform axial distributed loading along its length of w 8 kN/m. Two concentrated loads also act on the rod: P = 3 kN and Q = 6 kN. Determine the normal stress in the rod at x = 1.5 m. Assume a = 0.7 m and b = 1.2 m. W ->P Q A B x a Answer: 0 = i MPa barrow_forwardThe rectangular bar is connected to the support bracket with a 19-mm-diameter pin. The bar width is w = 75 mm and the bar thickness is 20 mm. Each side of the bracket has the same dimensions as the bar. The average shear stress in the pin cannot exceed 120 MPa, the bearing stress in the bar cannot exceed 150 MPa, and the bearing stress in the bracket cannot exceed 150 MPa. Determine the maximum value of Pmax that can be supported by the structure. Answer: Pmax=arrow_forward
- The rectangular bar is connected to the support bracket with a 19-mm-diameter pin. The bar width is w = 70 mm and the bar thickness is 15 mm. Each side of the bracket has the same dimensions as the bar. The average shear stress in the pin cannot exceed 135 MPa, the bearing stress in the bar cannot exceed 150 MPa, and the bearing stress in the bracket cannot exceed 130 MPa. Determine the maximum value of Pmax that can be supported by the structure. P Answer: Pmax i kNarrow_forwardThe rectangular bar is connected to the support bracket with a 12-mm-diameter pin. The bar width is w = 65 mm and the bar thickness is 15 mm. Each side of the bracket has the same dimensions as the bar. The average shear stress in the pin cannot exceed 115 MPa, the bearing stress in the bar cannot exceed 130 MPa, and the bearing stress in the bracket cannot exceed 150 MPa. Determine the maximum value of Pmax that can be supported by the structure. Answer: Pmax W P i KNarrow_forwardThe rectangular bar is connected to the support bracket with a 17-mm-diameter pin. The bar width is w = 70 mm and the bar thickness is 20 mm. Each side of the bracket has the same dimensions as the bar. The average shear stress in the pin cannot exceed 130 MPa, the bearing stress in the bar cannot exceed 140 MPa, and the bearing stress in the bracket cannot exceed 150 MPa. Determine the maximum value of Pmax that can be supported by the structure.arrow_forward
- The vertical shaft with a diameter of d = 20 mm is supported by a thrust collar that rests on a 21-mm-thick plate. The thrust collar is 16-mm thick. Assume that the load P causes a compressive stress of 190 MPa in the shaft. If the bearing stress between the thrust collar and the plate is limited to 35 MPa, determine the minimum outer diameter Dcollar that must be used for the thrust collar. Thrust collar area Plate Thrust collar d Dcollararrow_forwardThe rectangular bar is connected to the support bracket with a 17-mm-diameter pin. The bar width is w = 80 mm and the bar thickness is 15 mm. Each side of the bracket has the same dimensions as the bar. The average shear stress in the pin cannot exceed 125 MPa, the bearing stress in the bar cannot exceed 150 MPa, and the bearing stress in the bracket cannot exceed 150 MPa. Determine the maximum value of Pmax that can be supported by the structure. P KN Answer: Pmax= iarrow_forwardMechanics Of Materials Iarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
EVERYTHING on Axial Loading Normal Stress in 10 MINUTES - Mechanics of Materials; Author: Less Boring Lectures;https://www.youtube.com/watch?v=jQ-fNqZWrNg;License: Standard YouTube License, CC-BY