
Fundamentals of General, Organic, and Biological Chemistry (8th Edition)
8th Edition
ISBN: 9780134015187
Author: John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 4.10, Problem 4.21P
Interpretation Introduction
Interpretation:
The Lewis structure, the shape and the polarity of dimethyl ether (
Concept Introduction:
Lewis structures are also known as Lewis dot structures which represent the bonding between atoms of a molecule and the lone pairs of electrons that may exist in the molecule.
Covalent bonds are formed by sharing of electrons between atoms.
The polarity of a bond is arises due to the difference in electronegativity of atoms present in that bonding.
Molecular geometry can be predicted from the structure by using the valence-shell Electron-pair repulsion (VSEPR) model.
- Count the number of valence electron pairs (bond pairs and lone pairs).
- Assume that the valence electron pairs form a structure that allows them to be as far away from each other as possible.
- If there are only two bond pair electrons, the molecule is linear.
- If there are three bond pair electrons, the molecule is shaped like a trigonal planar.
- If there are four bond pair electrons, the molecule is shaped as a regular tetrahedral.
- Repulsion between lone pair-bond pair of electrons effect the geometry of molecules.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
In a cell free preparation of beta-lactamase, penicillin is hydrolyzed in a D2O enriched assay. After one round of catalysis, where would you anticipate finding Deuterium?
please help thank you
To map the active site of -lactamase, the enzyme was hydrolyzed with trypsin to yield a hexapeptide (P1) with the following amino acids. Glu, Lys, Leu, Phe, Met, and Ser.
Treatment of P1 with phenyl isothiocyanate yielded a PTH derivative of phenylalanine and a peptide (P2). Treatment of P1 with cyanogenbromide gave an acidic tetrapeptide (P3) and a dipeptide (P4).Treatment of P2 with 1-fluoro-2,4-dinitrobenzene, followed by complete hydrolysis, yields N-2,4-dinitrophenyl-Glu. P1, P2, and P3 contain the active site serine.
question: the b-lactamase hydrolyzes the lactam-ring in antibiotics like penicillin. Describe the mechanism, of hydrolysis, insuring to include the involvement of S, D, and K in the reaction sequence. Please help!
Three of these amino acids participate in the proteolytic hydrolysis of polypeptides. Show the charge-relay network generated by the serine proteases and identify the nucleophilic species that initiates the hydrolysis.
please help!
Chapter 4 Solutions
Fundamentals of General, Organic, and Biological Chemistry (8th Edition)
Ch. 4.1 - Prob. 4.1PCh. 4.2 - Prob. 4.2PCh. 4.2 - Prob. 4.3PCh. 4.3 - Prob. 4.4PCh. 4.3 - Prob. 4.5PCh. 4.4 - The BF3 molecule can also react with NH3 by...Ch. 4.5 - Prob. 4.7PCh. 4.7 - Prob. 4.8PCh. 4.7 - Add lone pairs where appropriate to the following...Ch. 4.7 - Prob. 4.10P
Ch. 4.7 - Prob. 4.11PCh. 4.7 - The molecular model shown here is a representation...Ch. 4.7 - Prob. 4.1CIAPCh. 4.7 - Prob. 4.2CIAPCh. 4.7 - Prob. 4.13PCh. 4.8 - Prob. 4.3CIAPCh. 4.8 - Prob. 4.4CIAPCh. 4.8 - Prob. 4.14PCh. 4.8 - Prob. 4.15PCh. 4.8 - Prob. 4.16PCh. 4.8 - Prob. 4.17KCPCh. 4.9 - The elements H, N, O, P, and S are commonly bonded...Ch. 4.9 - Prob. 4.19PCh. 4.10 - Look at the molecular shape of formaldehyde (CH2O)...Ch. 4.10 - Prob. 4.21PCh. 4.10 - Prob. 4.22KCPCh. 4.11 - Prob. 4.5CIAPCh. 4.11 - Prob. 4.6CIAPCh. 4.11 - Prob. 4.23PCh. 4.11 - Prob. 4.24PCh. 4 - What is the geometry around the central atom in...Ch. 4 - Prob. 4.26UKCCh. 4 - The ball-and-stick molecular model shown here is a...Ch. 4 - Prob. 4.28UKCCh. 4 - Prob. 4.29UKCCh. 4 - Prob. 4.30UKCCh. 4 - What is a covalent bond, and how does it differ...Ch. 4 - Prob. 4.32APCh. 4 - When are multiple bonds formed between atoms and...Ch. 4 - Identify the bonds formed between the following...Ch. 4 - Prob. 4.35APCh. 4 - Prob. 4.36APCh. 4 - Prob. 4.37APCh. 4 - Prob. 4.38APCh. 4 - Prob. 4.39APCh. 4 - Prob. 4.40APCh. 4 - Prob. 4.41APCh. 4 - Prob. 4.42APCh. 4 - Prob. 4.43APCh. 4 - Prob. 4.44APCh. 4 - Prob. 4.45APCh. 4 - Prob. 4.46APCh. 4 - Prob. 4.47APCh. 4 - If a research paper appeared reporting the...Ch. 4 - Consider the following possible structural...Ch. 4 - Prob. 4.50APCh. 4 - Prob. 4.51APCh. 4 - Prob. 4.52APCh. 4 - Prob. 4.53APCh. 4 - Prob. 4.54APCh. 4 - Draw a Lewis structure for the following...Ch. 4 - Prob. 4.56APCh. 4 - Ethanol, or grain alcohol, has the formula C2H6O...Ch. 4 - Prob. 4.58APCh. 4 - Tetrachloroethylene, C2Cl4, is used commercially...Ch. 4 - Prob. 4.60APCh. 4 - The carbonate ion, CO32, contains a double bond....Ch. 4 - Prob. 4.62APCh. 4 - Prob. 4.63APCh. 4 - Prob. 4.64APCh. 4 - Prob. 4.66APCh. 4 - Predict the geometry around each carbon atom in...Ch. 4 - Prob. 4.68APCh. 4 - Prob. 4.69APCh. 4 - Prob. 4.70APCh. 4 - Prob. 4.71APCh. 4 - Prob. 4.72APCh. 4 - Which of the following bonds are polar? If a bond...Ch. 4 - Prob. 4.74APCh. 4 - Based on electronegativity differences, would you...Ch. 4 - Arrange the following molecules in order of the...Ch. 4 - Prob. 4.77APCh. 4 - Prob. 4.78APCh. 4 - Prob. 4.79APCh. 4 - Prob. 4.80APCh. 4 - Prob. 4.81APCh. 4 - Prob. 4.82APCh. 4 - Prob. 4.83APCh. 4 - Prob. 4.84APCh. 4 - Prob. 4.85CPCh. 4 - Prob. 4.86CPCh. 4 - Prob. 4.87CPCh. 4 - Prob. 4.88CPCh. 4 - Prob. 4.89CPCh. 4 - The phosphonium ion, PH4+, is formed by reaction...Ch. 4 - Prob. 4.91CPCh. 4 - Prob. 4.92CPCh. 4 - Prob. 4.93CPCh. 4 - Prob. 4.94CPCh. 4 - Prob. 4.95CPCh. 4 - Prob. 4.96CPCh. 4 - Prob. 4.97CPCh. 4 - Write Lewis structures for molecules with the...Ch. 4 - Prob. 4.99CPCh. 4 - Prob. 4.100GPCh. 4 - Hydrazine is a substance used to make rocket fuel....Ch. 4 - Prob. 4.102GPCh. 4 - Titanium forms both molecular and ionic compounds...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biochemistry and related others by exploring similar questions and additional content below.Similar questions
- You have isolated a protein and determined that the native molecular weight of the holoenzyme is 160 kD using size exclusion chromatography. Analysis of this protein using SDS-PAGE revealed 2 bands, one at 100 kD and one at 30 kD. 1. Describe the architecture of the polypeptide component of this enzyme. 2. The enzyme was found to be 0.829% NAD (by weight). What further can be said regarding the architecture? can you please help me with question number 2arrow_forwardTo map the active site of -lactamase, the enzyme was hydrolyzed with trypsin to yield a hexapeptide (P1) with the following amino acids. Glu, Lys, Leu, Phe, Met, and Ser. Treatment of P1 with phenyl isothiocyanate yielded a PTH derivative of phenylalanine and a peptide (P2). Treatment of P1 with cyanogenbromide gave an acidic tetrapeptide (P3) and a dipeptide (P4).Treatment of P2 with 1-fluoro-2,4-dinitrobenzene, followed by complete hydrolysis, yields N-2,4-dinitrophenyl-Glu. P1, P2, and P3 contain the active site serine. Question: although S, K, and D are involved in the catalysis, the E in this hexapeptide does not participate in the hydrolysis of the b-lactam ring. Why is that?arrow_forwardTo map the active site of beta-lactamase, the enzyme was hydrolyzed with trypsin to yield a hexapeptide (P1) with the following amino acids. Glu, Lys, Leu, Phe, Met, and Ser. a) Using the experimental results described below deduce the primary sequence of the active site hexapeptide. Treatment of P1 with phenyl isothiocyanate yielded a PTH derivative of phenylalanine and a peptide (P2). Treatment of P1 with cyanogenbromide gave an acidic tetrapeptide (P3) and a dipeptide (P4).Treatment of P2 with 1-fluoro-2,4-dinitrobenzene, followed by complete hydrolysis, yields N-2,4-dinitrophenyl-Glu. P1, P2, and P3 contain the active site serine. please help!arrow_forward
- The beta-lactamase hydrolyzes the lactam-ring in penicillin. Describe the mechanism of hydrolysis, insuring to include the involvement of S, D, & K in the reaction sequence. Please helparrow_forwardTo map the active site of beta-lactamase, the enzyme was hydrolyzed with trypsin to yield a hexapeptide (P1) with the following amino acids. Glu, Lys, Leu, Phe, Met, and Ser. Treatment of P1 with phenyl isothiocyanate yielded a PTH derivative of phenylalanine and a peptide (P2). Treatment of P1 with cyanogenbromide gave an acidic tetrapeptide (P3) and a dipeptide (P4).Treatment of P2 with 1-fluoro-2,4-dinitrobenzene, followed by complete hydrolysis, yields N-2,4-dinitrophenyl-Glu. P1, P2, and P3 contain the active site serine. Why doesn't D in this hexapeptide not participate in the hydrolysis of the beta-lactam ring even though S, K, and D are involved in the catalyst?arrow_forwardTo map the active site of -lactamase, the enzyme was hydrolyzed with trypsin to yield a hexapeptide (P1) with the following amino acids. Glu, Lys, Leu, Phe, Met, and Ser. Treatment of P1 with phenyl isothiocyanate yielded a PTH derivative of phenylalanine and a peptide (P2). Treatment of P1 with cyanogenbromide gave an acidic tetrapeptide (P3) and a dipeptide (P4).Treatment of P2 with 1-fluoro-2,4-dinitrobenzene, followed by complete hydrolysis, yields N-2,4-dinitrophenyl-Glu. P1, P2, and P3 contain the active site serine. Using the experimental results described above derive the primary sequence of the active site hexapeptide. Please help!arrow_forward
- Which type of enzyme catalyses the following reaction? oxidoreductase, transferase, hydrolase, lyase, isomerase, or ligase.arrow_forward+NH+ CO₂ +P H₂N + ATP H₂N NH₂ +ADParrow_forwardWhich type of enzyme catalyses the following reaction? oxidoreductase, transferase, hydrolase, lyase, isomerase, or ligase.arrow_forward
- Which features of the curves in Figure 30-2 indicates that the enzyme is not consumed in the overall reaction? ES is lower in energy that E + S and EP is lower in energy than E + P. What does this tell you about the stability of ES versus E + S and EP versus E + P.arrow_forwardLooking at the figure 30-5 what intermolecular forces are present between the substrate and the enzyme and the substrate and cofactors.arrow_forwardprovide short answers to the followings Urgent!arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Biology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
- Anatomy & PhysiologyBiologyISBN:9781938168130Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark WomblePublisher:OpenStax CollegeBiology Today and Tomorrow without Physiology (Mi...BiologyISBN:9781305117396Author:Cecie Starr, Christine Evers, Lisa StarrPublisher:Cengage LearningHuman Biology (MindTap Course List)BiologyISBN:9781305112100Author:Cecie Starr, Beverly McMillanPublisher:Cengage Learning

Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning

Anatomy & Physiology
Biology
ISBN:9781938168130
Author:Kelly A. Young, James A. Wise, Peter DeSaix, Dean H. Kruse, Brandon Poe, Eddie Johnson, Jody E. Johnson, Oksana Korol, J. Gordon Betts, Mark Womble
Publisher:OpenStax College

Biology Today and Tomorrow without Physiology (Mi...
Biology
ISBN:9781305117396
Author:Cecie Starr, Christine Evers, Lisa Starr
Publisher:Cengage Learning

Human Biology (MindTap Course List)
Biology
ISBN:9781305112100
Author:Cecie Starr, Beverly McMillan
Publisher:Cengage Learning