Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 15P
(a)
To determine
The length of box.
(b)
To determine
The wavelength of photon emitted during the transition from
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An atom in an excited state of 4.7 eV emits a photon and ends up in the ground state. The lifetime of the excited state is 1.0 x 10-13 s. (a) What is the energy uncertainty of the emitted photon? (b) What is the spectral line width (in wavelength) of the photon?
An electron confined to a box absorbs a photon with wavelength λ. As a result, the electron makes a transition from the n = 1 state to the n = 3 state. (a) Find the length of the box. (b) What is the wavelength λ' of the photon emitted when the electron makes a transition from the n = 3 state to the n = 2 state?
When an electron in a one-dimensional box makes a transition from the n = 1 energy level to the n = 2 level, it absorbs a photon of wavelength 426 nm. What is the wavelength of that photon when the electron undergoes a transition (a) from the n = 2 to the n = 3 energy level and (b) from the n = 1 to the n = 3 energy level? (c) What is the width L of the box?
Chapter 41 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Similar questions
- What is the de Brogue wavelength of an electron that is accelerated from rest through a potential difference of 20 keV?arrow_forwardWhat is the wavelength of (a) a 12-keV X-ray photon; (b) a 2.O-MeV y -ray photon?arrow_forwardWhat is the de Brogue wavelength of a proton whose kinetic energy is 2.0 MeV? 10.0 MeV?arrow_forward
- When a hydrogen atom is in its ground state, what are the shortest and longest wavelengths of the photons it can absorb without being ionized?arrow_forwardA quantum mechanical oscillator vibrates at a frequency of 250.0 THz. What is the minimum energy of radiation it can emit?arrow_forwardIf the work function of a metal is 3.2 eV, what is the maximum wavelength that a photon can have to eject a photoelectron from this metal surface?arrow_forward
- At what velocity will an electron have a wavelength of 1.00 m?arrow_forwardWhen a hydrogen atom undergoes a transition from n=3 to n=2 level, a photon with λ=656.5 nm is emitted. (a) If we imagine the atom as an electron in a one-dimensional box, what is the width of the box so that the transition from n=3 to n=2 corresponds to the emission of a photon of this wavelength? (b) For a box with the width calculated in (a), what is the ground energy state? (c) Do you think a one-dimensional box is a good model for a hydrogen atom? Because?arrow_forward(a)What are the energies of the first three energy levels of an electron confined in a one-dimensional box of wavelength 0.70nm. Give your answer in electron volts (eV) (b) How much energy must the electron lose to move from the n=2 energy level to the n=1 energy level? Again, give your answer in eV. (c) Suppose that an electron can move from the n=2 level to n=1 level by emitting a photon of light. If energy is conserved, what must the photon wavelength be? Give your answer in nanometersarrow_forward
- An electron is trapped in a one-dimensional box that is 501 nm wide. Initially, it is in the n = 3 energy level but, after a photon is absorbed, the electron is in the n = 6 energy level. What was the wavelength of the absorbed photon? wavelength: .0306 Eventually, the electron ends up in the ground state. As it does so, one or more photons are emitted during those transitions. Find the wavelengths of the least energetic and most energetic photons that might be emitted during all the possible transitions to the ground state. wavelength of least energetic photon: wavelength of most energetic photon: Incorrect m Incorrect m Earrow_forwardThe distance between atoms in a crystal of NaCl is 418.5 nm. The crystal is being studied in a neutron diffraction experiment. At what speed (in m/s) must the neutrons be moving so that their de Broglie wavelength is the same length as the spacing between the atoms? (Assume the neutrons are non-relativistic.)arrow_forwardA photon with wavelength X scatters off an electron at rest, at an angle with the incident direction. The Compton wavelength of the electron Ac = 0.0024 nm. a) For λ = 0.0006 nm and 0 = 53 degrees, find the wavelength X' of the scattered photon in nanometres. b) Obtain a formula for the energy of the electron Ee after collision, in terms of the universal constants h, c and the variables X, X' and Ac. The answer must be expressed in terms of these variables only. (Please enter an algebraic expression using latex format; do not input any numerical values) c) Using the energy conservation condition, find the value of the electron energy Ee after scattering in units of keV. d) Write an algebraic expression for the electron's momentum pe in terms of its energy Ee, its mass me and the speed of light c. e) What is the de Broglie wavelength of the scattered electron ? Express your answer in terms of Ee, me, and X and c. f) Find the value of the de Broglie wavelength of the scattered electron…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning