Physics for Scientists and Engineers with Modern Physics, Technology Update
9th Edition
ISBN: 9781305401969
Author: SERWAY, Raymond A.; Jewett, John W.
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 41, Problem 31P
(a)
To determine
The probability of transmission of electron through the barrier.
(b)
To determine
The probability of reflection of electron.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
13.a. In a Compton scattering, a photon of wavelength (439) nm is collided with an electron and scattered through an angle (69)°. Calculate the energy transferred to the electron in this collision.
b. A rectangular block of copper having dimensions (20.5) cm × (20.5) cm × (49) cm. If the resistivity (?) of copper is 17.2 n Ω?, determine its resistance.
An alpha particle is a helium nucleus consisting of two protons and two neutrons.
It is moving with a speed of 1.90 × 103 m/s.
What is the momentum of the alpha particle? (Give answer in kg x m/s)
а.
b.
If there is a 25% uncertainty in the momentum of this alpha particle, what is the minimum
uncertainty in the position of the alpha particle? (Give your answer in meters)
A thin solid barrier in the xy-plane has a 12.6µm diameter circular hole. An electron traveling in
the z-direction with vx
0.00m/s passes through the hole. Afterward, within what range is vx
likely to be?
Chapter 41 Solutions
Physics for Scientists and Engineers with Modern Physics, Technology Update
Ch. 41.1 - Prob. 41.1QQCh. 41.2 - Prob. 41.2QQCh. 41.2 - Prob. 41.3QQCh. 41.5 - Prob. 41.4QQCh. 41 - Prob. 1OQCh. 41 - Prob. 2OQCh. 41 - Prob. 3OQCh. 41 - Prob. 4OQCh. 41 - Prob. 5OQCh. 41 - Prob. 6OQ
Ch. 41 - Prob. 7OQCh. 41 - Prob. 8OQCh. 41 - Prob. 9OQCh. 41 - Prob. 10OQCh. 41 - Prob. 1CQCh. 41 - Prob. 2CQCh. 41 - Prob. 3CQCh. 41 - Prob. 4CQCh. 41 - Prob. 5CQCh. 41 - Prob. 6CQCh. 41 - Prob. 7CQCh. 41 - Prob. 8CQCh. 41 - Prob. 1PCh. 41 - Prob. 2PCh. 41 - Prob. 3PCh. 41 - Prob. 4PCh. 41 - Prob. 5PCh. 41 - Prob. 6PCh. 41 - Prob. 7PCh. 41 - Prob. 8PCh. 41 - Prob. 9PCh. 41 - Prob. 10PCh. 41 - Prob. 11PCh. 41 - Prob. 12PCh. 41 - Prob. 13PCh. 41 - Prob. 15PCh. 41 - Prob. 16PCh. 41 - Prob. 17PCh. 41 - Prob. 18PCh. 41 - Prob. 19PCh. 41 - Prob. 20PCh. 41 - Prob. 21PCh. 41 - Prob. 22PCh. 41 - Prob. 23PCh. 41 - Prob. 24PCh. 41 - Prob. 25PCh. 41 - Prob. 26PCh. 41 - Prob. 27PCh. 41 - Prob. 28PCh. 41 - Prob. 29PCh. 41 - Prob. 30PCh. 41 - Prob. 31PCh. 41 - Prob. 32PCh. 41 - Prob. 33PCh. 41 - Prob. 34PCh. 41 - Prob. 36PCh. 41 - Prob. 37PCh. 41 - Prob. 38PCh. 41 - Prob. 39PCh. 41 - Two particles with masses m1 and m2 are joined by...Ch. 41 - Prob. 41PCh. 41 - Prob. 42PCh. 41 - Prob. 43APCh. 41 - Prob. 44APCh. 41 - Prob. 45APCh. 41 - Prob. 46APCh. 41 - Prob. 47APCh. 41 - Prob. 48APCh. 41 - Prob. 49APCh. 41 - Prob. 50APCh. 41 - Prob. 51APCh. 41 - Prob. 52APCh. 41 - Prob. 53APCh. 41 - Prob. 54APCh. 41 - Prob. 56APCh. 41 - Prob. 57APCh. 41 - Prob. 58APCh. 41 - Prob. 59CPCh. 41 - Prob. 60CPCh. 41 - Prob. 61CPCh. 41 - Prob. 62CPCh. 41 - Prob. 63CP
Knowledge Booster
Similar questions
- V (x) = 00, V(x) = 0, x<0,x 2 a 0arrow_forward(a) What is the energy of an electron whose de Brogue wavelength is that of a photon of yellow light with wavelength 590 nm? (b) What is the de Brogue wavelength of an electron whose energy is that of the photon of yellow light?arrow_forwarda. Calculate the minimum uncertainty in the position of an electron in meters, if its velocity has been measured to within 2.34e-06 m/s. For the mass of an electron use 9.10938356 × 10-31 kg and for huse 1.0545718 x 10-34 Js. m b. 44 = 141² = ² represents a: O the pitchfork operator O probability density O numerov program O wave function c. The sum of all the little bits of probability over possible measurements that can be made (i.e. over all space): S4²4 = 1 is called: O the quantum condition O the normalization condition O the human condition O the eignen conditionarrow_forwardwith explination please ..arrow_forwardAn electron with a kinetic energy of 44.34 eV is incident on a square barrier with Up = 57.43 eV and w = 2.200 nm. What is the probability that the electron tunnels through the barrier? (Use 6.626 x 1034 j x S for h, 9.109 x 1031 kg for the mass of an electron, and 1.60 x 1019 C for the charge of an electron.)arrow_forwardA. If the position of a chlorine ion in a membrane is measured to an accuracy of 1.50 µm, what is its minimum uncertainty in velocity (in m/s), given its mass is 5.86 10-26 kg? B. If the ion has this velocity, what is its kinetic energy in eV? (Compare this with typical molecular binding energies of about 5 eV.)arrow_forwardIn studying the emission of electrons from metals it is necessary to take into account the fact that electrons with energy sufficient to escape from the metal can, according to quantum mechanics, undergo reflection at the surface of the metal. Consider a one-dimensional model with the potential V(x) = -Vo, x 0 (outside the metal). a. Write the general solution for the wavefunction of an electron of energy E>0 for x0 for x>0. c. Determine the reflection probability of an electron of energy E>0 at the surface of the metal (at x=0).arrow_forwardP17.5 Another important uncertainty principle is encountered in time-dependent systems. It relates the lifetime of a state At with the measured spread in the photon energy AE associated with the decay of this state to a stationary state of the system. "Derive" the relation AE At ≥ h/2 in the following steps. a. Starting from E = p/2m and AE = (dE/dpx)^px, Vx Apx. show that AE = b. Using vx = Ax/At, show that AE At = ApxAx ≥ h/2. c. Estimate the width of a spectral line originating from the decay of a state of lifetime 1.0 × 10s and 1.0 × 10-¹¹ s in inverse seconds and inverse centimeters.arrow_forwardA stream of electrons, each with a kinetic energy of 450 eV, is sent through a potential-free region toward a potential barrier of "height" 500 eV and thickness 0.300 nm. The stream consists of 1 × 1015 electrons. How many should tunnel through the barrier? Pick the closest answer. The electron mass is 9.10938 x 10-31 kg. O 8 x 107 O 8 × 10⁹ 3 x 10³ 6 x 104 4x 107 4 x 105 O 1 x 106 O 7 x 104 Ⓒ 9 × 105 O 7 x 106arrow_forwardPlease Asaparrow_forwardAn electron having total energy E = 4.50 eV approaches a rectangular energy barrier with U = 5.00 eV and L = 950 pm as shown in Figure P40.21. Classically, the electron cannot pass through the barrier because E < U. Quantum-mechanically, however, the probability of tunneling is not zero.(b) To what value would the width L of the potential barrier have to be increased for the chance of an incident 4.50-eV electron tunneling through the barrierto be one in one million?arrow_forwardPulsed lasers are very similar to regular lasers, except they don't continuously emit laser light. Baby spice is looking at one on Ebay, and she finds a pulsed He-Ne laser that emits a cylindrical beam of light with a diameter of 0.750 cm. Each pulse lasts for 1.30 ns, and each burst contains an amount of energy equal to 3.00 J. Baby Spice has the following questions about this laser. (a) What is the length of each pulse of laser light? m (b) What is the average energy per unit volume for each pulse? J/m³arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning